Цифровые двойники процессов индукционного нагрева в металлургической промышленности

  • Виктор Болеславович Демидович
Ключевые слова: индукционный нагрев, компьютерное моделирование, электромагнитные и температурные поля, оптимальное проектирование, вычислительный эксперимент, цифровой двойник

Аннотация

Цифровизация систем индукционного нагрева в металлургии проходит путь от цифрового моделирования электромагнитных полей до построения цифровых двойников. В статье рассмотрены основные этапы эволюции цифрового моделирования, включая проведение вычислительных экспериментов и разработку цифровых двойников индукционных нагревательных систем. Выявлены главные особенности разработки цифровых двойников индукционных нагревательных систем. Разработаны экономичные методы расчета электромагнитных полей в устройствах индукционного нагрева и принципы построения мультифизических моделей, в том числе наиболее важных электротепловых моделей. Разработан комплекс специализированных программ для моделирования не только устройств индукционного нагрева, но и технологий с использованием индукционного нагрева. Показана тесная связь оптимального проектирования и управления индукционными нагревателями. Приведены примеры построения цифровых двойников различных комплексов с применением индукционного нагрева.

Биография автора

Виктор Болеславович Демидович

доктор техн. наук, профессор, главный научный сотрудник ООО «Русские технологии индукционного нагрева», Санкт-Петербург, Россия.

Литература

1. Бааке Э., Йорн У., Мюльбауэр А. Энергопотребление и эмиссия СО2 при промышленном технологическом нагреве. Essen: Vulkan, 1997, 173 c.
2. Rudnev V., Loveless D., Cook R. Handbook of Induction Heating. 2nd Edition, CRC Press, 2017, DOI: 10.1201/9781315117485-3.
3. Muehlbauer A. History of Induction Heating and Melting. Essen: Vulkan Verlag, 2008, 202 p.
4. Baake E. Energy Efficient Use of Electricity in Metallurgical Processes. – XXIV International UIE Congress on Electricity Applications in Modern World (EAMW´08), Kraków (Poland), May 19-21, 2008.
5. Демидович В.Б. Пpименение индукционного нагpева в металлуpгическом пpоизводстве. – Электрометаллургия, 2006, № 4, с. 20–24.
6. Kunda J.K., Peysakhovich V.A., Swanger S. Induction Heating Before Rolling on the World’s Largest Continuous Caster. – Intern. Congress Electromagnetic Processing of Materials, Paris, 1997. pp. 231–237.
7. Боровков А.И. и др. Передовые производственные технологии: возможности для России. Экспертно-аналитический доклад. СПб.: Политех-Пресс, 2020, 436 с.
8. Negri E., Fumagalli L, Macchi, M. A Review of the Roles of DT in CPS-Based Production Systems. – Procedia Manufacturing, 2017, vol. 11, pp. 939–948, DOI: 10.1016/j.promfg.2017.07.198.
9. Боровков А.И. и др. Цифровые двойники: вопросы терминологии. СПб.: Политех-Пресс, 2021, 28 с.
10. Demidovich V., Rastvorova I. Induction Heating in the Processing of Ti & Zr. – Journal of Electromagnetic Analysis and Applications, 2014, 06(13), pp. 404–412, DOI:10.4236/jemaa.2014.613042.
11. Самарский А.А. Вычислительный эксперимент в задачах технологии. – Вестник АН СССР, 1984, № 3, с. 77–88.
12. Слухоцкий А.Е., Рыскин С.Е. Индукторы для индукционного нагрева. Л.: Энергия, 1974, 264 с.
13. Davis J., Simpson P. Induction Heating Handbook. McGraw-Hill, 1979, 426 p.
14. Бутырин П.А., Алпатов М.Е. Цифровизация и аналитика в электротехнике. Цифровые двойники трансформаторов. – Электричество, 2021, № 10, с. 4–10.
15. Немков В.С., Демидович В.Б. Теория и расчет устройств индукционного нагрева. Л.: Энергоатомиздат, 1988, 280 с.
16. Kolbe E., Reiss W. Eine methode zur numerisce bestimmung der stromdichteverteilung in induktiv erwärmten körpern unterschliedlicher geometrischer Form. In Z. Wiss (Ed.), Hochschule Elektrotechnik, 1963, Ilmenau, J.9, H.3, pp. 311–317.
17. Lavers J.D., Biringer P.P. An Improved Method of Calculating the Power Generated in an Inductively Heated Load. – IEEE Transactions on Industry Applications, 1974, 10(2), pp. 273–278, DOI: 10.1109/TIA.1974.349144.
18. Демидович В.Б. Цифровое моделирование электромагнитных процессов в технологических индукционных устройствах. – Электричество, 2021, № 7, c. 26–32.
19. Lavers J.D. State of Art of Numerical Modeling for Induction Processes. – International Journal of Computations and Mathematics in Electrical, 2008, 27(2), pp. 335–349, DOI:10.1108/03321640810847625.
20. Демидович В.Б., Чмиленко Ф.В. Компьютерное моделирование устройств индукционного нагрева. СПб: Изд-во СПбГЭТУ «ЛЭТИ», 2013, 160 с.
21. Khorshev A.A. et al. Development and Comparison of 3D Nonlinear Electrothermal Models for Induction Heating Problems. – IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 2021, pp. 941–945, DOI:10.1109/ElConRus51938.2021.9396426.
#
1. Baake E., Yorn U., Myul’bauer А. Energopotreblenie i emis-siya СО2 pri promyshlennom tekhnologicheskom nagreve (Energy Consumption and CO2 Emissions from Industrial Process Heating). Essen: Vulkan, 1997, 173 p.
2. Rudnev V., Loveless D., Cook R. Handbook of Induction Heating. 2nd Edition, CRC Press, 2017, DOI: 10.1201/9781315117485-3.
3. Muehlbauer A. History of Induction Heating and Melting. Essen: Vulkan Verlag, 2008, 202 p.
4. Baake E. Energy Efficient Use of Electricity in Metallurgical Processes. – XXIV International UIE Congress on Electricity Applications in Modern World (EAMW´08), Kraków (Poland), May 19-21, 2008.
5. Demidovich V.B. Elektrometallurgiya – in Russ. (Electrometallurgy), 2006, No. 4, pp. 20–24.
6. Kunda J.K., Peysakhovich V.A., Swanger S. Induction Heating Before Rolling on the World’s Largest Continuous Caster. – Intern. Congress Electromagnetic Processing of Materials, Paris, 1997. pp. 231–237.
7. Borovkov А.I. et al. Peredovye proizvodstvennye tekhnologii: vozmozhnosti dlya Rossii. Ekspertno-analiticheskiy doklad (Advanced Manufacturing Technologies: Opportunities for Russia. Expert and Analytical Report). SPb.: Politekh-Press, 2020, 436 p.
8. Negri E., Fumagalli L, Macchi, M. A Review of the Roles of DT in CPS-ased Production Systems. – Procedia Manufacturing, 2017, vol. 11, pp. 939–948, DOI: 10.1016/j.promfg.2017.07.198.
9. Borovkov A.I. et al. Tsifrovye dvoyniki: voprosy terminologii (Digital Doubles: Terminology Issues). SPb.: Politekh-Press, 2021, 28 p.
10. Demidovich V., Rastvorova I. Induction Heating in the Processing of Ti & Zr. – Journal of Electromagnetic Analysis and Applications, 2014, 06(13), pp. 404–412, DOI:10.4236/jemaa.2014.613042.
11. Samarskiy А.А. Vestnik AN SSSR – in Russ. (Bulletin of the USSR Academy of Sciences), 1984, No. 3, pp. 77–88.
12. Sluhotskiy A.E., Ryskin S.Е. Induktory dlya induktsionnogo nagreva (Inductors for Induction Heating). L.: Energiya, 1974, 264 p.
13. Davis J., Simpson P. Induction Heating Handbook. McGraw-Hill, 1979, 426 p.
14. Butyrin P.A., Alpatov М.Е. Elektrichestvo – in Russ. (Electricity), 2021, No. 10, pp. 4–10.
15. Nemkov V.S., Demidovich V.B. Teoriya i raschet ustroystv induktsionnogo nagreva (Theory and Calculation of Induction Heating Devices). L.: Energoatomizdat, 1988, 280 p.
16. Kolbe E., Reiss W. Eine methode zur numerisce bestimmung der stromdichteverteilung in induktiv erwärmten körpern unterschliedlicher geometrischer Form. In Z. Wiss (Ed.), Hochschule Elektrotechnik, 1963, Ilmenau, J.9, H.3, pp. 311–317.
17. Lavers J.D., Biringer P.P. An Improved Method of Calculating the Power Generated in an Inductively Heated Load. – IEEE Transactions on Industry Applications, 1974, 10(2), pp. 273–278, DOI: 10.1109/TIA.1974.349144.
18. Demidovich V.B. Elektrichestvo – in Russ. (Electricity), 2021, No. 7, pp. 26–32.
19. Lavers J.D. State of Art of Numerical Modeling for Induction Processes. – International Journal of Computations and Mathematics in Electrical, 2008, 27(2), pp. 335–349, DOI:10.1108/03321640810847625.
20. Demidovich V.B., Chmilenko F.V. Komp'yuternoe modeliro-vanie ustroystv induktsionnogo nagreva (Computer Simulation of Induction Heating Devices). SPb: Izd-vo SPbGETU «LETI», 2013, 160 p.
21. Khorshev A.A. et al. Development and Comparison of 3D Nonlinear Electrothermal Models for Induction Heating Problems. – IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 2021, pp. 941–945, DOI:10.1109/ElConRus51938.2021.9396426.
Опубликован
2023-02-20
Раздел
Статьи