Study of the Influence of Control System Parameters on the Quality of the Input Current of a Three-Phase Power Factor Corrector

SOROKIN D.
Transconverter LLC, Moscow, Russia
VOLSKIY S.
MAI (NRU), Moscow, Russia
DRAGOUN J.
UWB, Pilsen, Czech Republic

Abstract

The paper suggests a control system of a three-phase power factor corrector. The study of the control system operation is carried out and the expressions for calculating the permissible values of error amplifier factors are obtained. The influence of the error amplifier parameters on phase current quality is investigated. The dependence of total harmonic distortion input current on a combination of error amplifier parameters is obtained at a given value of power factor. The conditions under which the total harmonic distortion input current has the minimum value are found out. This article is of interest to power electronics engineers, who are aimed at developing a three-phase power factor corrector.

K e y w o r d s : three-phase power factor corrector, control system, error amplifier parameters, total harmonic distortion

Nowadays the criterion of phase current consumption quality is the power factor which should tend to unity and total harmonic distortion which value should tend to zero. Upon that the total harmonic distortion (THD) is determined by:

$$
\begin{equation*}
T H D 40=\left(\sqrt{\sum_{n=2}^{40}\left(\frac{I_{n}}{I_{1}}\right)^{2}}\right) 100 \%, \tag{1}
\end{equation*}
$$

where I_{1} is the RMS value of the first harmonic consuming phase current; I_{n} is the RMS value of the n-th harmonic consuming phase current; $n=40$ is the largest harmonic component of consuming phase current which is considered when calculating the total harmonic distortion.

In order to ensure the required quality, the function of phase current consumption correction is used in three-phase AC converters. These converters are called power factor correctors (PFC). In response to specified function the consuming phase current of PFC has the power factor maximum possible value and it is in phase to the associated phase voltage. It should be noted that the choice of error amplifier factor of the three-phase PFC control system has a considerable impact on consuming phase current quality.

Control system of three-phase PFC. Using the results of studies [1-18], we selected a three-phase PFC power circuit with low power losses on power
semiconductor devices. The developed mathematical models and block scheme of the control system of the chosen power circuit in standard operating mode as well as unbalanced bipolar load were described in detail at [19-21]. The control system structure of considered three-phase PFC can be found in Fig. 1.

The represented control system of PFC works in the following way.

The u_{a}, u_{b} and u_{c} signals from $B U 1-B U 3$ voltage sensors, and also the i_{a}, i_{b} and i_{c} signals from current $B I 1-B I 3$ sensors come to the $A 1$ and $A 2$ blocks, which complete Park-Gorev forward conversion and generate the u_{d}, u_{q} and i_{d}, i_{q} signals. Then the above-mentioned signals follow to the $A 3$ block, which calculates currently instantaneous values of p and q powers consumed from the three-phase circuit. At the same time the signals from $B U 4$ and $B U 5$ sensors come to the $A 8$ block which calculates $u_{D C}$ and $\Delta u_{D C}$ voltages.

The $i_{\mathrm{H} 1}$ signal from $B I 4$, and $u_{D C}, u_{d}$ voltage signals and given voltage value come to the $A 9$ block, which calculates the preset real power p^{*} :

$$
\begin{equation*}
p^{*}=\frac{3}{4} \frac{u_{d}^{2}}{R_{L}}-\sqrt{\left(\frac{3}{4} \frac{u_{d}^{2}}{R_{L}}\right)^{2}-\frac{3}{2} \frac{u_{d}^{2} u_{D C}^{* 2}}{R_{L} R}} \tag{2}
\end{equation*}
$$

Upon that the p_{e} power error signal, which equals p и p^{*} signal difference, the $q, u_{d}, u_{q}, u_{D C}$ and $\Delta u_{D C}$ signals

Fig. 1. The control system structure of considered three-phase PFC
and $r_{a 1}, r_{a 2}$ and $r_{a 3}$ coefficients come to the $A 4$ block calculating d_{d}, d_{q}, d_{0} switching functions.

Then the d_{d}, d_{q}, d_{0} signals come to the $A 7$ block completing the reverse vector Park-Gorev conversion, and calculates the d_{a}, d_{b} and d_{c} signals. The obtained d_{a}, d_{b} and d_{c} signals come to the $A 6$ block which generates the PWM control signals for the power transistors of the $A 5$ block of the PFC.

As a result, the considered control system receiving the signals from the $B U-B U 5$ voltage sensors, the $B I 1-B I 4$ current sensors and the given $u_{D C}^{*}$ voltage value and circular frequency calculates the p real power, the preset p^{*} real power, and p_{e} power error signal. Then using the $r_{a 1}, r_{a 2}$ and $r_{a 3}$ coefficients, it calculates the d_{d}, d_{q}, d_{0} switching functions, and after the backward vector Park-Gorev conversion generates a switching of power transistors of the PFC where the p_{e} power error signal tends to zero.

The study of error amplifier factors. In the article [21] we got some equations for the calculation of switching functions in $d q 0$-coordinates:

$$
\left\{\begin{array}{l}
\bar{d}_{d}=\frac{2}{u_{d} u_{D C}}\left(u_{d}^{2}+r_{a 1}\left(p-p^{*}\right)-\frac{2}{3} L \omega q\right) ; \tag{3}\\
\bar{d}_{q}=\frac{2}{u_{d} u_{D C}}\left(u_{d} u_{q}+r_{a 2} q-\frac{2}{3} L \omega p\right) ; \\
\bar{d}_{0}=\frac{2}{u_{d} u_{D C}}\left(u_{d} u_{0}+r_{a 3} z\right) .
\end{array}\right.
$$

We are proposed to present the aforementioned switching functions using two components:

$$
\left\{\begin{array}{l}
\bar{d}_{d}=f_{d . t r}+f_{d . s t} ; \tag{4}\\
\bar{d}_{q}=f_{q . t r}+f_{q . s t} ; \\
\bar{d}_{0}=f_{0 t r}+f_{0 s t},
\end{array}\right.
$$

where $f_{\text {d.tr }}, f_{\text {q.tr }}, f_{0 t r}$ are alternating components of switching functions; $\underline{f}_{\text {d.st }}, f_{q . s t}, f_{0 s t}$ are steady-state components of $\bar{d}_{d}, \bar{d}_{q}^{d . s t}, \bar{d}_{0}$ functions.

Taking into account (4), we obtained the following formulas from (3):

$$
\left.f_{d . s t}=\frac{2}{u_{d} u_{D C}}\left(u_{d}^{2}-\frac{2}{3} R_{L} p^{*}\right)-\frac{2}{3} L \omega q\right) ;
$$

$$
\begin{aligned}
& f_{q . s t}=\frac{2}{u_{d} u_{D C}}\left(u_{d} u_{q}+\frac{2}{3} L \omega p\right) ; \\
& f_{0 s t}=\frac{2 u_{0}}{u_{D C}} ; \\
& f_{\text {d.tr }}=\frac{2}{u_{d} u_{D C}} r_{a 1}\left(p-p^{*}\right) ; \\
& f_{\text {q.tr }}=\frac{2}{u_{d} u_{D C}} r_{a 2} q \\
& f_{0 t r}=\frac{2}{u_{d} u_{D C}} r_{a 3} z
\end{aligned}
$$

The values of steady-state components of switching functions can be calculated according to the suggested steady-state mode of the converter. Upon that the ripples of $f_{\text {d.st }}$ steady-state component can be neglected.

The analysis shows that the $f_{\text {d.tr }}$ ripple value depends directly on $r_{a 1}$ error amplifier factor value. For the operation of PWM $A 6$ block it is necessary for the \bar{d}_{d} switching function values to remain within the interval $[0 ; 1]$, and also for the geometrical mean value of the \bar{d}_{d} and \bar{d}_{q} steady-state components to be less than unity. From the first assumption we inferred the existence of $r_{a l}$ maximum value:

$$
\begin{equation*}
f_{d . t r} \leqslant 1-f_{d . s t} \tag{5}
\end{equation*}
$$

It should be noted that $f_{\text {d.tr }}$ value contains ripples caused by the ripples of the consumed phase currents of the PFC. Upon that the mentioned switching function component has deviations during the transients. For example, when the load resistance changes, a small voltage jump occurs, that for some period of time tends to the $u_{D C}^{*}$ present value. Upon that the duration of transient depends on $r_{a l}$ value. As the $r_{a l}$ coefficient increases, the duration of the transition decreases. Therefore, the coefficient $r_{a 1}$ must have the maximum possible value corresponding to (5).

Taking into account that the i_{d} is vector projection of the input phase currents and is approximately equal to the amplitude of phase current, we obtained the following expression for calculating the range of the real power ripples:

$$
\begin{equation*}
\Delta p=p-p^{*}=\frac{3}{4} u_{d} \Delta i_{d}=\frac{3}{8} \frac{u_{d} u_{D C}}{L f_{V T}} . \tag{6}
\end{equation*}
$$

As a result, from (5) and with regard to (6) we got the range of the $r_{a 1}$ error amplifier factor:

$$
\begin{equation*}
0<r_{a \mathrm{l}} \leqslant \frac{4}{3} L f_{V T}\left(1-f_{d . s t}\right) \tag{7}
\end{equation*}
$$

Upon that we determined the maximum $r_{a l}$ coefficient value, where $A 6$ PWM block ensures operation taking into account (7):

$$
\begin{equation*}
r_{a \mathrm{l} \max }=\frac{4}{3} L f_{V T}\left(1-f_{d . s t}\right) \tag{8}
\end{equation*}
$$

From the second condition of the $A 6$ block correct operation and taking into account the symmetry of the input phase voltages, the range of the $r_{a 2}$ coefficient was estimated. In order for the amplitude of the switching functions in $a b c$-coordinates to be less than unity, the following condition must be completed:

$$
\begin{equation*}
\sqrt{\bar{d}_{d}^{2}+\bar{d}_{q}^{2}+\bar{d}_{0}^{2}}=1 \tag{9}
\end{equation*}
$$

From (9) and if the $r_{a 1}$ is fixed, we defined the relation between the $r_{a 2}$ and $r_{a 3}$ coefficients. Disregarding the \bar{d}_{d} switching function ripple and taking into account (4) we got the equation of the second degree:

$$
f_{q . t r}^{2}+2 f_{\text {q.st }} f_{\text {q.tr }}+f_{\text {q.sr }}^{2}+\bar{d}_{d \max }^{2}+\bar{d}_{0}^{2}-1=0
$$

As for $f_{q . t r}$, we obtained the following solutions:

$$
\begin{equation*}
f_{q . t r_{1,2}}=-f_{q . s t} \pm \sqrt{1-\bar{d}_{d \max }^{2}-\bar{d}_{0}^{2}} \tag{10}
\end{equation*}
$$

Please note, that the sign «一» in (10) reliably leads to the negative value of $r_{a 2}$ coefficient, that is contrary to its definition range. Substituting in (10) the equations (4), (9) and taking into account that if the symmetrical input phase voltage $u_{0}=0$, we obtained the equation which relates to both the $r_{a 2}$ and $r_{a 3}$ coefficients:

$$
r_{a 2}=-f_{q . s t}+\frac{u_{d} u_{D C}}{2 q} \sqrt{1-\bar{d}_{d \max }^{2}-\left(\frac{2}{u_{d} u_{D C}} r_{a 3} z\right)^{2}}
$$

Taking into account the condition that the $r_{a 2}$ coefficient is real, from (10) we obtained the $r_{a 3 \text { max }}$ maximum error amplifier factor value:

$$
\begin{equation*}
r_{a 3 \max }=\frac{u_{d} u_{D C}}{2 z} \sqrt{1-\bar{d}_{d \max }^{2}} \tag{11}
\end{equation*}
$$

Similarly, from the equation (11) we got the equation to calculate the $r_{a 2 \text { max }}$ maximum error amplifier factor value:

$$
\begin{equation*}
r_{a 2 \max }=\frac{u_{d} u D C}{2 q} \sqrt{1-\bar{d}_{d \max }^{2}}-f_{q . s t} \tag{12}
\end{equation*}
$$

It should be noted that input phase currents are summarized in neutral conductor according to the Kirchhoff's first law. Upon that the sum of the basic

Fig. 2. The designed simulation computer model: E_{a}, E_{b} and E_{c} are EMF of the input three-phase power supply; $L 1-L 6$ are input reactors; VD1-VD12 are power diodes; VT1-VT6 are power
transistors; $C 1$ and $C 2$ are output capacitors; R is PFC load
harmonic components of the input phase currents in symmetrical mode equals zero. Consequently, the phase currents ripples generate current in the neutral conductor. So, the value of the power z due to the current in the neutral conductor is defined as:

$$
\begin{equation*}
z=\frac{3}{32} \frac{u_{d} u_{D C}}{L f_{V T}} . \tag{13}
\end{equation*}
$$

The q reactive power value is obtained as:

$$
\begin{equation*}
q=\frac{1}{P F} \sqrt{p^{2}-P F^{2}\left(p^{2}-z^{2}\right)} \tag{14}
\end{equation*}
$$

With fixed $r_{a 1}$ coefficient and using the equations (11)-(14) it is possible to create a great number of $\left(r_{a 2}\right.$, $r_{a 3}$) couple coefficients.

The analysis of the $f_{\text {d.st }}, f_{q . s t}$ and $f_{0 s t}$ components shows that $r_{a 2}$ and $r_{a 3}$ coefficients can vary within wider limits than $r_{a l}$ without affecting the $A 6$ block operation of the PWM.

It should be noted that reduction of the reactive component that is consumed from the power network occurs with the increase in $r_{a 2}$ coefficient, but at the same time the total harmonic distortion input current is rising. The analysis shows that if $r_{a 3}$ coefficient is fixed, there is a $r_{a 2}$ value when THD40 has the minimum value.

On the other hand, when the $r_{a 3}$ increases, the power component decreases due to the current in the i_{0} neutral conductor while the reactive component of the input power increases. Upon that if a substantial decrease of the load resistance happens, the longstanding transient occurs, during which the difference of average voltages on the output capacitors tends to take a minimum value for a long time. Moreover, the duration of the described transient has the minimum value at a $r_{a 3}$ coefficient equal to zero.

Based on the above it can be concluded that the determination of the $r_{a 1}, r_{a 2}$ and $r_{a 3}$ error amplifier factors is a challenging task. Upon that the different combinations of $r_{a 1}, r_{a 2}$ and $r_{a 3}$ combinations severely affect the PFC operating mode and the input phase current quality. Considering that it is difficult to obtain an analytical solution, it is reasonable to study the $r_{a l}$, $r_{a 2}$ and $r_{a 3}$ coefficients influence on the electric process using the simulation computer model (SCM) of the considered PFC basing on required quality criteria of the input phase current.

The Fig. 2 shows the designed SCM of the control system of the three-phase PFC.

The results of simulation computer. Using designed SCM at specified PF coefficient, the influence of $r_{a 1}$, $r_{a 2}$ and $r_{a 3}$ coefficients on input phase current quality was studied. We calculated the $r_{a 3}$ coefficient when the
$r_{a 1}$ coefficient changes discretely from zero to the maximum value ($r_{a l \max }$) calculated from (8), and the $r_{a 2}$ coefficient changes discretely from zero to the maximum value ($r_{a 2 \text { max }}$) calculated from (12). Then we obtained the THD 40 and PF values for the found $r_{a 3}$, using the developed SCM. The $r_{a 3}$ coefficient functions vs $r_{a 2}$ value at different $r_{a 1}$ coefficient quantity are shown on Fig.3.

The results of $r_{a 2}$ and $r_{a 3}$ are shown in the Table at a given $r_{a 1}$ value when $T H D 40_{\text {min }}=f\left(r_{a 1}, r_{a 2}, r_{a 3}\right)$ takes the minimum value. The study of the computer modeling results represented in Table allows to come to the conclusion that there is a unique $r_{a l}$ coefficient value where THD40 has the minimum quantity, and it is close to the maximum accepted value calculated with the use of (8). Accordingly, it is reasonable to make a search of the $r_{a 2}$ и $r_{a 3}$ coefficients (where THD40 will have the minimum value) in proximity of the $r_{a 1}$ maximum accepted coefficient.

$r_{a 1}$	$r_{a 2}$	$r_{a 3}$	$T H D 40_{\text {min }}=$ $=f\left(r_{a 1}, r_{a 2}, r_{a 3}\right)$	$P F$
$0,100_{r a 1 \max }^{*}=0,10$	10,0	3,60	2,56	0,9994
$0,30_{r a 1 \text { max }}^{*}=0,30$	8,93	3,21	1,30	0,9994
$0,50_{r a 1 \text { max }}^{*}=0,50$	7,62	2,74	0,81	0,9994
$0,70_{r a 1 \text { max }}^{*}=0,69$	5,96	2,14	0,59	0,9993
$0,90_{r a 1 \text { max }}^{*}=0,89$	2,95	2,40	0,47	0,9992
$0,95_{r a 1 \text { max }}^{*}=0,93$	1,72	2,16	0,51	0,9988
$0,99_{r a 1 \text { max }}^{*}=0,98$	2,15	1,60	1,20	0,9961

We assumed that the surface area THD40 $=f\left(r_{a 2}, r_{a 3}\right)$ has only one $r_{a 2}$ and $r_{a 3}$ value pair where the THD40 derivation will be equal to zero. If this assumption is correct, then such $r_{a 2}$ and $r_{a 3}$ value pair will be easy to obtain using well-known mathematical optimization methods.

Fig. 3. The functions $r_{a 3}$ of error amplifier factor vs $r_{a 2}$ value at different $r_{a 1}$ coefficient value of control system

Fig. 4. The functions ra3 of error amplifier factors vs THD40 total harmonic distortion input current

To confirm the mentioned assumption, we carried out analysis of surface area $T H D 40=f\left(r_{a 2}, r_{a 3}\right)$ with the use of brute-force search method (exhaustive search) at $r_{a 1}=0,9 r_{a 1 \max } r_{a 2}=0 \ldots 10,0$, and $r_{a 3}=0 \ldots 10,0$.

Using computer simulations, we obtained the THD40 lines (Fig. 4) which correspond to the $0.4 ; 0.6$; $0.75 ; 1.5 ; 2.5 ; 5.0$ and 10.0%. From Fig. 4 it is obvious that the given dependences have only one local (global) the THD40 minimum. Upon that the difference between obtained THD40 minimum values in Table and in Fig. 3 is due to the assumptions at the conclusion (14) and (13). Generally, in absolute magnitude the given difference has a small value and it is accepted in engineering calculations.

The obtained results confirm the fact that there is only one local (global) minimum of THD40 for a given PF. This factor at the given $P F$ simplifies the possibilities of forming an algorithm for searching triple $r_{a 1}, r_{a 2}$ and $r_{a 3}$ coefficients where THD40 takes the minimum value.

Conclusion. 1. The determination of the $r_{a 1}, r_{a 2}$ and $r_{a 3}$ error amplifier factors of control system is a challenging task. Upon that the different combinations of $r_{a 1}, r_{a 2}$ and $r_{a 3}$ severely affect the three-phase PFC operating mode and the input phase current quality.
2. It is proved that there is only one $r_{a 1}$ coefficient value where THD40 has its minimum, and it is close to the maximum accepted value.
3. It is acknowledged that at a given PF there is only one local (global) THD40 minimum. This factor at a given $P F$ value simplifies the possibilities of forming
an algorithm for searching triple $r_{a 1}, r_{a 2}$ and $r_{a 3}$ coefficients where THD40 takes the minimum value.

The results received could be of interest for those developers of three-phase PFCs who are challenging to design converters with high powers factor.

REFERENCES

1. Wang L., Wu Q.H., Tang W.H., Yu Z.Y., Ma W. CCM-DCM average current control for both continuous and discontinuous conduction modes boost PFC converters. - IEEE Electrical Power and Energy Conference (EPEC), 2017, pp. 31-36.
2. Sorokin D., Volskiy S. Comparative analysis of three-phase PFC rectifier. Electronics and Electrical Equipment for Transport (EET), 2018, vol. 9, pp. 13-21.
3. Meleshin V.I., Ovchinnikov D.A. Control of transistor energy converters. M.: Technosphere, 2011, 411 p.
4. Zinoviev G.C. Power electronics. M.: Yureit, 2015, 668 p.
5. Huber L. Performance comparison of three-step and six-step PWM in average-current-controlled three-phase six-switch boost PFC rectifier. - IEEE Transactions on Power Electronics, 2015, vol. 31, pp. 264-272.
6. Kolar J.W., Friedli T. The essence of three-phase PFC rectifier systems. - IEEE Transactions on Power Electronics, 2013, vol. 28, No.1, pp. 176-198.
7. Chaplygin E.E., Vo min Tien, Nguyen Hoang An. Vienne-rectifier-three-phase power factor corrector. - Power electronics, 2006, No. 1, pp. 20-24.
8. Krasnov I.Yu., Cheremisin V.N. Design of an active power factor corrector and simulation of its operation. - Proceedings of the Tomsk Polytechnic University, 2009, No. 4, pp. 92-97.
9. Dmitriev B.F., Galushin S.Ya. Topologies of power factor correctors in Autonomous power supply systems. - Marine Bulletin, 2013, No.1(10), pp. 37-40.
10. Wang L., Wu Q.H., Tang W.H., Yu Z.Y., Ma W. CCM-DCM average current control for both continuous and discontinuous conduction modes boost PFC converters. - IEEE Electrical Power and Energy Conference (EPEC2017), 2017, pp. 1-6.
11. Huber L. Performance Comparison of Three-Step and Six-Step PWM in Average-Current-Controlled Three-Phase Six-Switch Boost PFC Rectifier. - IEEE Transactions on Power Electronics, 2016, vol. 31, pp.7264-7272.
12. Bachurin P.A., Geist A.V., Korobkov D.V., Makarov D.V., Reshetnikov A.N., Kharitonov S.A. Systems for generating direct current electrical energy based on a magnetoelectric generator and an active rectifier. - Scientific Bulletin of Novosibirsk state technical University, 2015, No. 2(59), pp. 43-58.
13. Makarov S.N., Stephen R.L., Bitar J. Practical Electrical Engineering. Washington, USA: Worcester Polytechnic Institute, 2016, 986 p.
14. Alencar F. de Souza, Denis C. Pereira, Fernando L. Tofoli. Comparison of Control Techniques Used in Power Factor Correction Rectifiers. - 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronic Conference (COBEP/SPEC), Fortaleza, 2015, pp. 1-6.
15. Najafi E., Vahedi A., Mahanfar A., Yatim A.H.M. A new controlling method based on peak current mode (PCM) for PFC. 2008 IEEE 2nd International Power and Energy Conference, 2008, pp. 1103-1107.
16. Gegner J.P., Lee C.Q. Linear peak current mode control: a simple active power factor correction control technique for continuous conduction mode. - PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, 1996, pp. 196-202.
17. Belov G.A., Serebryannikov A.V. Distortion of the input current of the power factor corrector with a two-circuit control system. - Electricity, 2010, No. 8, pp. 42-51.
18. Yeong-Jun Choi, Kim Rae-Young, Tae-Jin Kim. A novel active discontinuous PWM control strategy for high efficiency partial switching predictive current-mode control PFC converter. - 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), 2017, pp.236-241.
19. Sorokin D.A., Volskiy S.I. Mathematical model of the three-phase AC power converter with bipolar unbalanced load. Practical power electronics, 2019, vol. 74, pp. 2-7.
20. Skorokhod Y., Sorokin D., Volskiy S. Power factor corrector for bipolar unbalanced load and asymmetrical three-phase power supply. - PCIM2020, Nurnberg, 2020, pp. 1079-1085.
21. Sorokin D.A., Volskiy S.I. Mathematical model of three-phase power corrector with improved efficiency. - Electricity, 2019, No. 5, pp. 58-66.

The authors: Sorokin Dmitry A. (Transconverter LLC, Moscow, Russia) Design Engineer, Cand. Sci. (Eng.)

Volskiy Sergey I. (Moscow Aviation Institute (The National Research University), Moscow, Russia) - Chair Professor of Electrical Power, Electromechanics and Biotechnical Systems, Dr. Sci. (Eng)

Dragoun Jaroslav (The University of West Bohemia, Pilsen, Czech Republic) research and development engineer of Regional Innovation Centre for Electrical Engineering (RICE); PhD student at Faculty of Electrical Engineering
[5.10.2020]
Электричество, 2021, № 2 с. 29-35
DOI:10.24160/0013-5380-2021-2-29-35

Исследование влияния параметров системы управления на качество входного тока трехфазного корректора мощности

СОРОКИН Дмитрий А. - кандидат техн. наук, инженер-конструктор ООО «Трансконвертер», Москва, Россия
ВОЛЬСКИЙ Сергей И. - доктор техн. наук, профессор кафедры «Электроэнергетика, электромеханика и биотехнические системы», Московский авиационный институт (Национальный исследовательский университет), Москва, Россия
ДРАГУН Ярослав - аспирант факультета электротехники, инженер-разработчик Регионального инновационного центра электротехники, Университет Западной Богемии, Плзень, Чешская республика
Предложена система управления трехфазным корректором коэффициента мощности. Проведено исследование рассматриваемой системы управления и получены выражения для расчета допустимых значений коэффициентов усилителей ошибок. Исследовано влияние коэффициентов усилителей ошибок системы управления на качество потребляемого фазного тока устройства. При заданном значении коэффициента мощности получены зависимости коэффициента гармонических составляющих входного фазного тока трехфазного корректора мощности от сочетания коэффициентов усилителей ошибок. Показаны условия, при которых коэффициент гармонических составляющих входного фазного тока принимает минимальное значение. Статья представляет интерес для инженеров силовой электроники, занимающихся вопросами разработки трехфазного корректора коэффициента мощности и проектированием устройств, требующих повышенного качества электрической энергии.

К л ю ч е в ы е с л о в а: трехфазный корректор мощности, система управления, коэффициент усилителей ошибки, коэффициент гармонических составляющих

