Оценка влияния высоты и взаимного расположения составных элементов опорной изоляции на ее электрическую прочность

КОРЯВИН А.Р., ВОЛКОВА О.В.

ВЭИ – филиал РФЯЦ-ВНИИТФ, Москва, Россия

Приведены результаты исследований влияния высоты и взаимного расположения составных элементов опорной изоляции классов сверхвысокого напряжения на ее электрическую прочность при воздействии коммутационных импульсов положительной полярности, при которых определяются минимально допустимые габариты изоляции. Показано, что наибольшие значения разрядного напряжения изоляции достигаются при формировании лидерного разряда по чисто воздушным траекториям: экран-подножник или экран-плоскость. Аналогичный результат обеспечивается в случае каскадных перекрытий по элементам колонки с экрана, если строительная высота верхнего изолятора сушественно больше, чем нижнего. Обратное взаимное расположение этих изоляторов приводит к резкому падению разрядного напряжения при каскадных перекрытиях. Показано, что в момент образования сквозной фазы основной вклад в величину разрядного напряжения изоляции вносит падение напряжения в положительных стримерах, которое прямо пропорционально длине этих стримеров. Отсюда следует, что основной причиной неоднозначного влияния высоты и взаимного расположения составных элементов опорной изоляции на ее электрическую прочность при каскадных перекрытиях является существенное различие в длине положительных стримерных зон в начале сквозной фазы. Если при высоте верхнего изолятора 2,7 м протяженность положительных стримеров в этот момент сопоставима с длиной стримеров при развитии разряда по чисто воздушным траекториям, то практически двойное сокращение высоты верхнего изолятора сопровождается резким уменьшением длины стримеров. Предложены меры по устранению нежелательных каскадных перекрытий и обеспечению наибольшей электрической прочности опорной изоляции.

К л ю ч е в ы е с л о в а: опорная изоляция, каскадные перекрытия, электрическая прочность, коммутационный импульс положительной полярности

Опорные изоляционные конструкции являются составной частью большинства видов электрооборудования сверхвысокого напряжения (СВН), к которому относятся: коммутационные аппараты, измерительные трансформаторы тока и напряжения, вентильные разрядники и ограничители перенапряжений, конденсаторы связи, шинные опоры.

При проектировании опорной изоляции (ОИ) основное требование состоит в обеспечении надежной ее работы в эксплуатации [1]. Эффективной мерой реализации этого требования является достижение высокого уровня электрической прочности ОИ при воздействии стандартного коммутационного импульса 250/2500 мкс положительной полярности, при котором габариты изоляции СВН принимают минимально допустимые значения.

Известными мерами повышения электрической прочности ОИ являются [2, 3]:

оснащение ОИ тороидальным экраном, позволяющим выравнивать распределение напряжения вдоль конструкции;

расположение экрана на оптимальном уровне относительно нижней поверхности верхнего фланца ОИ с целью предотвращения каскадных перекрытий (перекрытий каждого элемента конструкции), формирующихся с этого фланца, что сопровождается снижением разрядных напряжений.

Однако указанные меры не всегда приводят к желаемому результату. Существуют три возможных типа траектории разрядов, формирующихся с экрана:

по чисто воздушному пути: экран – заземленный подножник опорной изоляции;

по чисто воздушному пути: экран – заземленная плоскость;

каскадно (с экрана на нижний фланец верхнего элемента и далее, перекрывая каждый нижерасположенный элемент колонки).

Первым двум типам траектории разрядов соответствует наибольшая электрическая прочность ОИ.

Относительно небольшое количество экспериментальных данных свидетельствует о неоднозначном влиянии каскадных перекрытий с экрана (КПЭ) на электрическую прочность ОИ. В одних случаях такие перекрытия сопровождаются заметным снижением разрядного напряжения U_p , а в других значения U_p остаются на высоком уровне. Цель работы состояла в изучении влияния КПЭ на разрядные напряжения ОИ и разработке мер по устранению перекрытий, приводящих к снижению электрической прочности изоляции.

Для исследований выбирались опорные изоляционные конструкции со строительной высотой $H_{\rm crp}$ порядка 4 м и более, что соответствует внешней изоляции класса напряжения не менее 500 кВ. Для оценки влияния высоты элементов ОИ и их взаимного расположения в колонке использовались конструкции с разной строительной высотой изоляторов (рис. 1). Для предотвращения появления каскадных перекрытий с верхнего фланца колонки конструкции (рис. 1) оснащались тороидальным экраном, для которого согласно [2, 3] отношение диаметра тороида d_{3} к строительной высоте опорной изоляции $H_{\rm crp}$ должно быть не менее 0,2. Этому требованию удовлетворяли экраны ø 1 и 2 м, которые использовались в экспериментах.

Расчеты, выполненные по программе AXIAL [4], показали, что для существенного снижения напряженности поля на верхнем фланце колонки и предотвращения каскадных перекрытий с этого фланца экран ø 1 м должен располагаться ниже нижней поверхности этого фланца на 7 см (рис. 2).

Результаты экспериментальных исследований представлены в табл. 1.

Рис. 1. Эскизы исследуемых опорных изоляционных конструкций с подножником высотой 2,3 м

Fig. 1. Sketches of the studied supporting insulation constructions with a 2.3 m high pedestal

🔶 Напряженность поля на фланце 🛛 📥 Напряженность поля на экране

Рис. 2. Начальная напряженность поля на экране диаметром 1 м и верхнем фланце ОИ в зависимости от уровня расположения экрана по отношению к нижней поверхности верхнего фланца

Fig. 2. The initial field strength on the screen with a diameter of 1 m and the upper flange of the SI, depending on the level of the screen location in relation to the lower surface of the upper flange

Таблица 1

50%-е (U₅₀) и минимальные U_{р.мин} разрядные напряжения опорных изоляционных конструкций при коммутационном импульсе 250/2500 мкс положительной полярности

			+250/2500 m	мкс			
Ø1 M	$U_{ m 50}^{},{ m \kappa B}$	<i>U</i> _{р.мин} , кВ	Тип траектории разряда		U ₅₀ , кВ	$U_{\rm р.мин}$, кВ	Тип траектории разряда
t5 M		1230	Э-подн. – 79%	臺		1280	Э-подн. – 63 %
			Э-пл. – 13%				Э-пл. – 0 %
€ 2,3 M 4,0 M	1440		КПЭ - 8%	© 4,0 m	1510	1290	КПЭ – 37 %
Ø 2 м	U ₅₀ , кВ	U _{р.мин} , кВ	Тип траектории разряда	Ø 2 M	U ₅₀ , кВ	<i>U</i> _{р.мин} , кВ	Тип траектории разряда
		1240	Э-подн. – 75%			1320	Э-подн. – 79 %
(9) 2,3 M 2,7 M 1,4			Э-пл. – 25 %				Э-пл. – 21 %
	1480		КПЭ – 0 %	(2) m	1520		КПЭ – 0 %

50% (U_{50}) and minimum $U_{\text{р.мин}}$ discharge voltages of the supporting insulation structures at a switching pulse of 250/2500 µs of positive polarity

В отличие от грозовых воздействий характерной особенностью феноменологии разряда при коммутационных импульсах положительной полярности является большой разброс траекторий лидерного канала со значительным удалением периферийных разрядов от вертикальной оси конструкции. Именно эти импульсы используются в лабораторных исследованиях молниезащиты [5–7].

Вторая отличительная черта разрядного процесса состоит в завершении разряда только на фронте импульсного напряжения (предразрядное время T_p не превосходит длительности фронта T_{ϕ}) [8–11]. При воздействии импульсов 250/2500 мкс положительной полярности лидерный канал продвигается с постоянной скоростью 1,5 см/мкс по извилистой траектории преимущественно вдоль силовых линий поля, подавляющая часть которых располагается вдали от оси конструкции, а меньшая часть – ближе к этой оси. Именно эта часть траекторий ответственна за появление каскадных перекрытий с экрана (КПЭ) на нижний фланец верхнего изолятора.

В общем случае КПЭ является следствием существенного усиления напряженности поля на нижнем фланце верхнего элемента $E_{\text{н.фл}}$ до значений, достаточных для ориентировки головки нисходящего лидера к этому фланцу. Усиление $E_{\text{н.ф}}$ л осуществляется за счет действия положительного объемного заряда стримерной зоны, сосредоточенного на ее границе (рис. 3).

При небольшой высоте верхнего элемента (рис. 3,*a*) в процессе формирования КПЭ длина лидера, протяженность его стримерной зоны и величина объемного заряда достигают относительно небольших значений. То же самое относится к зонам разброса лидерного канала и его стримеров. Совокупность этих факторов приводит к тому, что каскадные перекрытия составляют лишь небольшую часть разрядного пути (в рассматриваемом случае 8 %), в то время как большая часть разрядов формируется по траекториям экран-подножник и экран-плоскость (табл. 1).

Для конструкции рис. 1,*а* начальному моменту формирования КПЭ $T_{\text{KII(1)}}$ соответствует относительно невысокое напряжение на высоковольтном электроде $U_{\text{KII(1)}}$, и для завершения разряда требуется также относительно небольшой подъем напряжения ΔU_1 в течение времени ΔT_1 . В результате разрядное напряжение в этом случае U_{pl} будет минимальным:

Рис. 3. Иллюстрация вероятности возникновения каскадного перекрытия колонок с разновысокими изоляторами в верхней части конструкции

$$U_{\rm pKII(1)} = U_{\rm KII(1)} + \Delta U_1 = U_{\rm p.MHI(1)},$$

а предразрядное время $T_{\rm p(1)} = T_{\rm KII(1)} + \Delta T_{\rm 1}$. Согласно опытным данным табл. 1 $U_{\rm pKII(1)} = 1120$ кВ.

Сказанное иллюстрируется рис. 4. Подавляющую же часть траекторий составляют периферийные разряды (экран-подножник и экран-плоскость), которым соответствует минимальное разрядное напряжение $U_{\text{р.мин}(2)} = 1230$ кВ. Как видно из рис. 4, в этом случае начальный момент времени формирования разряда по пути экран-подножник $T_{\text{э-подн}}$ может быть близок к соответствующему времени ($T_{\text{КП}(1)}$). Однако остальные параметры заметно возрастают: время развития лидера ΔT_2 от $T_{\text{э-подн}}$ до полного завершения разряда $T_{\text{р}(2)}$, подъ-

ем напряжения в течение времени $\Delta T_2 (\Delta U_2)$ и значение минимального разрядного напряжения $U_{\text{р,мин}(2)} = 1230 \text{ kB}.$

Почти двукратное увеличение высоты верхнего элемента конструкции (рис. 1, δ) сопровождается существенным изменением в картине каскадного перекрытия. Прежде всего, резко увеличивается число КПЭ (37 %). Казалось бы, что при этом должна снизиться и прочность колонки. В действительности же по сравнению с колонкой (рис. 1,a) значение 50 %-го разрядного напряжения U_{50} возросло и составило 1510 кВ, а минимальные разрядные напряжения $U_{\text{р.мнн}}$ оказались практически независимыми от траектории перекрытия (с экрана и далее чисто по воздушному пути

Рис. 4. Стилизованная осциллограмма импульса напряжения с длительностью фронта 250 мкс при каскадных и некаскадных перекрытиях изоляционной колонки с верхним изолятором высотой *h*_{верх} = 1,45 м и экраном ø 1 м

Fig. 4. Stylized oscillogram of a voltage impulse with a front duration of 250 μ s with cascading and non-cascading overlaps of an insulating column with an upper insulator with a height h = 1.45 m and a screen ø 1 m

 $(U_{\rm р.мнн} = 1280 \text{ кB})$ или каскадно вдоль конструкции $(U_{\rm р.мнн} = 1290 \text{ кB})).$

8

Как видно из рис. 3,6, при относительно большой высоте верхнего элемента в процессе формирования КПЭ длина лидера, протяженность его стримеров, величина объемного заряда, зоны разброса лидерного канала и его стримеров достигают существенно больших значений. Соответственно возрастает часть траекторий, расположенных ближе к оси конструкции и, следовательно, увеличивается вероятность появления каскадных перекрытий.

Для подтверждения правомерности проведенного качественного анализа выполним упрощенные количественные оценки. В классической работе [12] было показано, что для несимметричных воздушных промежутков длиной *S* (для которых размеры анода меньше размеров заземленного электрода) с сильной степенью неоднородности электрического поля *начальные коронные и лидерные явления практически не влияют на значение разрядного напряжения U*_p. Этот важнейший вывод использовался затем в [13, 14] при разработке инженерных методов расчета электрической прочности внешней изоляции.

Наибольший интерес в картине разрядного процесса представляет момент его перехода в сквозную фазу $T_{c,\phi}$, когда стримеры положительного лидера достигают противоположного заземленного электрода. В этот момент напряжение на промежутке практически совпадает с разрядным ($U_{c,\phi} \approx U_p$), а время $T_{c,\phi}$ – с предразрядным значением T_p . Этот факт позволил составить уравнение баланса напряжений в момент перехода разряда в сквозную фазу [12]:

$$U_{\rm p} = E_{\rm \pi} L_{\rm \pi} + E_{\rm c+} L_{\rm c+} = E_{\rm \pi} (S - L_{\rm c+}) + E_{\rm c+} L_{\rm c+}, \qquad (1)$$

где E_{n} и $E_{c^{+}}$ – средняя напряженность электрического поля в канале лидера и его стримерной зоне; L_{n} и $L_{c^{+}}$ – длина лидерного канала и его стримерной зоны в начале сквозной фазы.

Согласно табл. 1 для конструкции рис. 1,*а* при каскадных перекрытиях минимальное разрядное напряжение $U_{\text{р,мин}(1)} = 1120$ кВ. В первом приближении можно не учитывать встречную отрицательную составляющей стримерной зоны в начале сквозной фазы. Тогда, используя (1), оценим протяженность лидера и его положительной стримерной зоны в момент образования сквозной фазы. По данным [12–14] средняя напряженность поля в положительных стримерах остается неизменной и составляет $E_{c+} = 4,5$ кВ/см, а средние градиенты напряжения в лидерном канале задаются выражением [14]:

$$E_{\pi} = \frac{4,5}{1+0,076 L_{\pi}^{0,65}} \text{ (кB/см, см)}.$$
 (2)

Длина каскадного разряда S_p состоит из двух отрезков (рис. 5,*a*): S_1 длиной 124,6 см (длина промежутка экран ø 1 м – нижний фланец верхнего изолятора) и S_2 длиной 254 см (высота нижнего изолятора без учета высоты его фланцев). Общая длина каскадного разряда $S_p = 378,6$ см. При таком S_p уравнение баланса напряжений примет вид:

$$U_{\text{p.MHH}(1)} = \frac{4,5}{1+0,076^{0,65}} L_{\pi} + 4,5L_{\text{c+}} =$$

$$= \frac{4,5}{1+0,076^{0,65}} (378,6-L_{\text{c+}}) + 4,5 L_{\text{c+}} = 1120 \text{ kB.}$$
(3)

Результаты решения (3) представлены в табл. 2.

Проведем аналогичные расчеты для той же конструкции ($h_{\text{верх}} = 1,45 \text{ м}$, экран ø 1 м) при траектории разряда экран-подножник ($S_{\text{р}} = 400 \text{ см}$). В этом случае минимальное разрядное напряжение $U_{\text{р.мин}(2)}$ составляет 1230 кВ (см. табл. 1 и рис. 1,*a*).

При $S_{\rm p} = 400$ см уравнение баланса напряжений запишется как

$$U_{\text{p.MHH}(2)} = \frac{4,5}{1+0,076^{0.65}} L_{\pi} + 4,5L_{\text{c+}} =$$

= $\frac{4,5}{1+0,076^{0.65}} (400 - L_{\text{c+}}) + 4,5 L_{\text{c+}} = 1230 \text{ kB.}$ (4)

Результаты расчетов по (4) представлены в табл. 3.

Из табл. 2 и 3 видно, что в обоих случаях падение напряжения в каналах лидера ΔU_{n} близки и существенно меньше падения напряжения в стримерной зоне ΔU_{c^+} . Поэтому ΔU_{c^+} вносит основной вклад в величину разрядного напряжения. Например, согласно данным табл. 2 и 3 длина стримерной зоны в начале сквозной фазы ΔU_{c^+} при траектории разряда экран-подножник составляет 217 см, что на 25,1 см больше, чем при каскадных перекрытиях. Таким образом, при малой высоте верхнего элемента имеется явная зависимость разрядного напряжения конструкции от типа перекрытия.

Таблица 2

Результаты расчета длины лидера и его стримерной зоны в начале сквозной фазы при каскадном перекрытии конструкции (рис 1,*a*) с $U_{p,\text{мин}(1)} = 1120 \text{ kB}$ The results of calculating the length of the leader and its streamer zone at the beginning of the through phase with cascading overlap of the structure (Fig. 1,*a*) with $U_{p,\text{мин}(1)} = 1120 \text{ kV}$

<i>L</i> _л , см	<i>Е</i> _л , кВ/см	$\Delta U_{_{ m J}}$, кВ	L _{с+} , см	$\Delta U_{ m c^+}$, кВ	(<i>L</i> _л + <i>L</i> _{с+}), см	U _{р.мин(1)} , кВ
186,7	1,37	256	191,9	864	378,6	1120

Fig. 5. To determine the length of the cascade discharge S₂

Таблица 3

Результаты расчета длины лидера и его стримерной зоны в начале сквозной фазы при перекрытии конструкции (рис 1,*a*) по траектории экран-подножник с $U_{_{\rm р.MHH(2)}}$ = 1230 кВ

The results of calculating the length of the leader and his streamer zone at the beginning of the through phase when the structure is overlapped (Fig. 1,*a*) along the trajectory of the screen-footboard with a $U_{p,MHI(2)} = 1230$ kV

<i>L</i> _л , см	<i>Е</i> _л , кВ/см	$\Delta U_{_{ m J}}$, кВ	L _{с+} , см	Δ <i>U</i> _{c+} , кВ	(<i>L</i> _л + <i>L</i> _{с+}), см	U _{р.мин(2)} , кВ
183	1,39	254	217	976	400	1230

Проведем подобный анализ взаимосвязи линейных параметров каскадного разряда в начале сквозной фазы с минимальной величиной разрядного напряжения колонки ($U_{p,\text{мин(1)}} = 1290 \text{ кB}$) с верхним изолятором высотой 2,7 м и экраном ø 1 м (табл. 1 и рис. 1, δ).

Длина каскадного разряда S_p состоит из двух отрезков (рис. 5, δ): S_1 длиной 248,3 см (длина промежутка экран \emptyset 1 м – нижний фланец верхнего изолятора) и S_2 длиной 129 см (высота нижнего изолятора без учета высоты его фланцев). Общая длина каскадного разряда $S_p = 377,3$ см. Для рассматриваемого случая справедливо уравнение баланса напряжений

$$U_{\text{р.мин}(1)} = \frac{4,5}{1+0,076^{0.65}} (377,3-L_{\text{c}+}) + 4,5L_{\text{c}+} = 1290 \text{ kB.} (5)$$

Результаты расчетов по (5) приведены в табл. 4.

Для той же конструкции при траектории разряда экран-подножник ($S_{\rm p}$ = 400 см) минимальное разрядное напряжение $U_{\rm p, MH(2)}$ = 1280 кВ (табл. 1 и рис. 1, δ).

При $S_{\rm p} = 400$ см уравнение баланса напряжений запишется:

$$U_{\text{p.MHH}(2)} = \frac{4,5}{1+0,076^{0.65}} (400 - L_{\text{c}+}) + 4,5 L_{\text{c}+} = 1280 \text{ kB.} (6)$$

Результаты расчетов по (6) приведены в табл. 5.

Из данных табл. 4 и 5 видно, что в обоих случаях близким значениям разрядных напряжений ($U_{\text{р.мнн}(1)} \approx U_{\text{р.мнн}(2)}$) соответствуют близкие длины стримерных зон $L_{\text{с+}}$ в начале сквозной фазы. Отсюда следует, что увеличение высоты верхнего изолятора способствует росту электрической прочности изоляционной колонки и практическому отсутствию влияния типа перекрытия на величину разрядного напряжения.

На рис. 6 и 7 приведено графическое представление материала табл. 2–5 в виде зависимостей минимального разрядного напряжения $U_{\rm р, мин}$ и минимальной разрядной напряженности по длине траекторий разряда $E_{\rm р, мин}$ от отношения длины стримерной зоны в начале сквозной фазы $L_{\rm c+}$ к длине разрядного пути $S_{\rm p} = L_{\rm n} + L_{\rm c+}$.

Из рис. 6 и 7 видно, что данные табл. 2–5 хорошо описываются эмпирическими выражениями:

$$U_{\rm p.Muh} = -5050 + 20844 \frac{L_{\rm c+}}{S_{\rm p}} - 17108 \left(\frac{L_{\rm c+}}{S_{\rm p}}\right)^2; \qquad (7)$$

$$E_{\rm p,Muh} = 1,97 + 0,562 \,\frac{L_{\rm c+}}{S_{\rm p}} + 2,74 \left(\frac{L_{\rm c+}}{S_{\rm p}}\right)^2. \tag{8}$$

Таблица 4

Результаты расчета длины лидера и его стримерной зоны в начале сквозной фазы при каскадном перекрытии конструкции (рис 1,*б*) с U_{р.мнв(1)} = 1290 кВ

The results of calculating the length of the leader and its streamer zone at the beginning of the through phase with cascade overlap of the structure (Fig. 1, δ) with the $U_{p,\text{MUH}(1)} = 1290 \text{ kV}$

138,9 1,56 217 238,4 1073 377,3 1290	<i>L</i> _л , см	<i>Е</i> _л , кВ/см	$\Delta U_{_{\rm J}}$, κΒ	L _{с+} , см	$\Delta U_{ m c+}$, кВ	(L _л +L _{с+}), см	<i>U</i> _{р.мин(1)} , кВ
	138,9	1,56	217	238,4	1073	377,3	1290

Таблица 5

Результаты расчета длины лидера и его стримерной зоны в начале сквозной фазы при перекрытии конструкции (рис 1,б) по траектории экран-подножник с $U_{p,мин(2)} = 1280$ кВ The results of calculating the length of the leader and his streamer zone at the beginning of the through phase when the structure is overlapped (Fig. 1,б) along the trajectory of the screen-footboard with the $U_{p,мин(2)} = 1280$ kV

<i>L</i> _л , см	<i>Е</i> _л , кВ/см	$\Delta U_{_{\scriptscriptstyle A}}$, κΒ	L _{с+} , см	$\Delta U_{ m c+}$, кВ	(L _л +L _{с+}), см	<i>U</i> _{р.мин(2)} , кВ
169,6	1,43	243	230,4	1037	400	1280

Кривые рис. 6 и 7 позволяют оценивать электрическую прочность опорной изоляции с экраном ø 1 м при разных соотношениях высоты верхнего и нижнего элементов колонки. В частности, представляет интерес вариант конструкции строительной высотой $H_{\rm crp} = 415$ см, состоящей из двух изоляторов одинаковой строительной высоты $H_{\rm crp(верх)} = H_{\rm crp(низ)} = 207,5$ см (экран диаметром 1 м).

В рассматриваемом случае длина каскадного разряда S_p состоит из двух отрезков: S_1 длиной 186,3 см (длина промежутка экран Ø 1 м – нижний фланец верхнего изолятора) и S_2 длиной 191,5 см (высота нижнего изолятора без учета высоты его фланцев). Общая длина каскадного разряда S_p = 377,8 см.

Поскольку отношение $U_{p,\text{мин}}/E_{p,\text{мин}} = S_p$, то при известном $S_p = 377,8$ см, разделив (7) на (8), получим

Рис. 6. Зависимость минимального разрядного напряжения изоляционных конструкций по рис. 1 от отношения длины стримерной зоны в начале сквозной фазы к длине разрядного пути

Fig. 6. The dependence of the minimum discharge voltage of insulation constructions according to Fig. 1 on the ratio of the length of the streamer zone at the beginning of the final jump to the length of the discharge path

значение отношения длины стримерной зоны к длине разрядного пути $L_{c+}/S_{p} \approx 0,631$.

В этом случае уравнение баланса напряжений примет вид:

$$U_{\rm p,MHH} = E_{\pi} 0,369S_{\rm p} + 4,5 \cdot 0,631S_{\rm p} = = \frac{4,5}{1+0,076 \cdot 139,4^{0,65}} 139,4 + 4,5 \cdot 238,4 = 1291 \,\text{kB}.$$
⁽⁹⁾

Результаты расчетов по (9) приведены в табл. 6.

Таким образом, использование в конструкции одинаковых изоляторов со строительной высотой $H_{\rm crp} = 2$ м позволяет получить наибольшую электрическую прочность опорной колонки. В то же время конструкции, составленные из изоляторов относительно небольшой высоты, обладают заметно меньшими минимальными

Рис. 7. Зависимость минимальной разрядной напряженности изоляционных конструкций (рис. 1) от отношения длины стримерной зоны в начале сквозной фазы к длине разрядного пути

Fig. 7 The dependence of the minimum discharge strength of insulation constructions (Fig. 1) on the ratio of the length of the streamer zone at the beginning of the finale jump to the length of the discharge path

Таблица б

11

Результаты расчета длины лидера и его стримерной зоны в начале сквозной фазы при каскадном перекрытии конструкции из двух изоляторов одинаковой H_{err}

The results of calculating the length of the leader and its streamer zone at the beginning of the through phase with cascading overlap of a structure of two insulators of the same height $H_{\rm crp}$

<i>L</i> _л , см	<i>Е</i> _л , кВ/см	$\Delta U_{_{ m J}}$, кВ	L _{с+} , см	$\Delta U_{\rm c^+}$, кВ	$(L_{_{\rm I}}+L_{_{\rm C^+}})$, см	U _{р.мин(1)} , кВ
139,4	1,56	218	238,4	1073	377,8	1291

разрядными напряжениями. Так, согласно опытным данным для колонки с экраном ø 1 м, составленной из четырех изоляторов со строительной высотой каждый $H_{\rm crp(1-4)} = 130$ см, опытное значение $U_{\rm p.мин}$ оказалось равным 1150 кВ.

В этом случае длина каскадного разряда S_p состоит из четырех отрезков: $S_1 = 118,9$ см (длина промежутка экран \emptyset 1 м – нижний фланец верхнего изолятора) и трех отрезков $S_2 = 114$ см каждый (изоляционная часть остальных трех изоляторов – итого $S_2 = 342$ см). Длина разрядного пути $S_p = 460,9$ см. При таком S_p уравнение баланса напряжений примет вид:

$$U_{\text{p.MHH}(1)} = E_{\pi} L_{\pi} + E_{\text{c+}} L_{\text{c+}} =$$

= $E_{\pi} (460, 9 - L_{\text{c+}}) + 4, 5 L_{\text{c+}} = 1150 \text{ kB.}$ (10)

Результаты расчетов по (10) приведены в табл. 7.

В качестве иллюстрации расчетных данных табл. 6 и 7 на рис. 8 и 9 представлены электронно-оптические развертки разрядного процесса (эопограммы), полученные при исследовании конструкций с изоляторами относительно большой (рис. 8) и небольшой (рис. 9) высоты.

Из рис. 8 видно, что при разряде с экрана на подножник и при каскадном перекрытии колонки с равновысокими изоляторами большой высоты стримерные зоны имеют довольно большую протяженность, что обеспечивает высокие значения разрядного напряжения. Причем во втором случае длина стримеров оказалась больше, чем при разряде чисто по воздуху. В результате при каскадных перекрытиях разрядное напряжение оказывается несколько выше (1640 против 1580 кВ).

Резкое сокращение высоты изоляторов приводит к существенному изменению феноменологии разряда. При разряде с экрана на подножник разрядное напряжение составляет 1450 кВ, а длина стримерной зоны в начале сквозной фазы превышает половину разрядного пути $S_p = 470$ см (рис. 9,*a*). В результате решения уравнения баланса напряжений длина стримерной зоны

Таблица 7

Результаты расчета длины лидера и его стримерной зоны в начале сквозной фазы при каскадном перекрытии конструкции из четырех изоляторов с $H_{crp} = 1,3$ м, $U_{p,\text{мин(1)}} = 1150$ кВ The results of calculating the length of the leader and its streamer zone at the beginning of the through phase with structure cascading overlap of four insulators with the $H_{crp} = 1.3$ m, $U_{p,\text{мин(1)}} = 1150$ kV

Рис. 8. Стилизованное представление опорной изоляции с изоляторами большой высоты с траекторией разряда экран-подножник (*a*) и каскадно с экрана (б) и электронно-оптические развертки разряда при коммутационном импульсе 250/2500 мкс положительной полярности

Fig. 8. A stylized representation of the support insulation with big hight insulators with a screen-pedistal discharge trajectory (*a*) and cascaded from the screen (δ) and electron-optical scans of the discharge at a switching pulse of 250/2500 microseconds of positive polarity

12

Рис. 9. Стилизованное представление опорной изоляции с изоляторами небольшой высоты с траекторией разряда экран-подножник (*a*) и каскадно с экрана (*б*) и электронно-оптические развертки разряда при коммутационном импульсе 250/2500 мкс положительной полярности

Fig. 9. Stylized representation of the support insulation with insulators of small height with a discharge path of the shield-footboard (*a*) and cascaded from the screen (δ) and electron-optical scans of the discharge at a switching pulse of 250/2500 microseconds of positive polarity

в начале сквозной фазы L_{c^+} оказалась равной 262 см $(L_{c^+}/S_{\rm p}=0.56S_{\rm p}).$

При каскадном перекрытии каждого изолятора протяженность стримеров оказывается менее половины высоты изоляционной части перекрываемых изоляторов. Перекрытие верхнего и каждых ниже расположенных элементов сопровождается яркой вспышкой лидерных каналов и увеличением длины стримерной зоны (рис. 9, δ). Из табл. 7 видно, что в этом случае при длине разрядного пути $S_p = 460,9$ см протяженность стримерной зоны $L_{c+} = 185,5$ см ($L_{c+}/S_p = 0,4S_p$), а разрядное напряжение $U_{p,MHH} = 1150$ кВ, что много меньше, чем для конструкции по рис. 9,a.

Для конструкций (рис. 1) с разновысокими верхними изоляторами увеличение диаметра экрана с 1 до 2 м приводит к полному устранению каскадных перекрытий (табл. 1). При этом наблюдается небольшое увеличение как 50 %-го, так и минимального разрядного напряжения.

Выводы. При воздействии стандартного коммутационного импульса 250/2500 мкс положительной полярности наибольшая электрическая прочность экранированной опорной изоляции сверхвысокого напряжения обеспечивается при формировании лидерного разряда по чисто воздушному пути: экран-подножник или экран-плоскость. В этом случае протяженность положительных стримеров в начале сквозной фазы и падение напряжения на ней, а следовательно и величина разрядного напряжения, достигают своих наибольших значений.

При каскадных перекрытиях с экрана по элементам опорной изоляции ее электрическая прочность зависит от высоты и взаимного расположения составляющих ее изоляторов. Каскадные перекрытия изоляционных конструкций, состоящих из одинаковых изоляторов относительно небольшой высоты, сопровождаются резким снижением разрядных напряжений. Аналогичное заключение справедливо и для разновысоких элементов колонки при небольшой высоте верхнего изолятора. Низким значениям разрядного напряжения соответствует и относительно небольшая длина положительной стримерной зоны в начале сквозной фазы.

Почти двукратное увеличение высоты верхнего элемента приводит к заметному росту разрядных напряжений при каскадных перекрытиях и практическому их равенству разрядным напряжениям, соответствующим траекториям разряда по чисто воздушному пути.

Для обеспечения высокой электрической прочности опорной изоляции класса напряжения 500 кВ и выше целесообразно использовать одинаковые изоляторы строительной высотой порядка 2 м и более. Современный уровень технологии позволяет изготавливать фарфоровые и полимерные изоляторы такой высоты без особых затруднений. При этом отношение диаметра тороидального экрана к строительной высоте колонки $ø_3/H_{crp}$ должно быть не менее 0,25. В случае необходимости применения разновысоких изоляторов высота нижнего элемента должна быть не менее 1,5 м. Двойное увеличение отношения $ø_3/H_{crp}$ способствует полному устранению каскадных перекрытий и достижению наибольшей электрической прочности опорной изоляции.

СПИСОК ЛИТЕРАТУРЫ

1. **ГОСТ Р 52034-2008.** Изоляторы керамические опорные на напряжение свыше 1000 В. Общие технические условия. М.: Стандартинформ, 2009, 28 с.

2. Александров Г.Н., Иванов В.Л. Изоляция электрических аппаратов высокого напряжения. Л.: Энергоатомиздат, 1984, 208 с.

3. Слуцкин Л.С. Исследование электрической прочности опорной изоляции выключателей серии ВНВ. – Электричество, 1978, № 10, с. 74–77.

4. Белоедова И.П. и др. Расчет электрических полей устройств высокого напряжения. М.: Издательский дом МЭИ, 2008, 249 с.

5. Базелян Э.М., Горин Б.Н., Левитов В.И. Физические и инженерные основы молниезащиты. Л.: Гидрометеоиздат, 1978, 223 с.

 Ларионов В.П. Основы молниезащиты. М.: Знак, 1999, 103 с.
 Ларионов В.П. Молниезащита. Часть 1. – Электричество, 1999, № 4, с. 51–58. 8. Syssoev V.S., Shcherbakov Yu.V. Electrical Strength of Ultra-Long Air Gaps, 2001, DOI:10.4271/2001-01-2898.

9. Gallimberti I., et al. Fundamental Processes in Long Air Gap Discharges. – C. R. Physique, 2002, No. 3, pp. 1335–1359.

10. Carrara G., Thione L. Switching surge strength of large air gaps: A physical approach. – IEEE Transactions on Power Apparatus and Systems, 1976, No. 2, pp. 512–524, DOI:10.1109/T-PAS.1976.32131.

11. Carrara G., Pigini A., Thione L. Switching Impulse Insulation Strength of Multi-Electrode Air Gaps. Application of the «Leader Inception Approach» to the Determination of the Switching Impulse Strength of Multi-Electrode Air Insulation. – Colloquium CIGRE, 1975, 33–75(SC).

12. Горин Б.Н., Шкилев А.В. Развитие электрического разряда в длинных воздушных промежутках при импульсном напряжении положительной полярности. – Электричество, 1974, № 2, с. 29–38.

13. Волкова О.В., Корявин А.Р. К оценке минимальной электрической прочности длинных воздушных промежутков. – Электричество, 1980, № 3, с. 46–47.

14. **Корявин А.Р.** Минимальная электрическая прочность длинных воздушных промежутков с высоковольтным электродом различной формы. – Электротехника, 1983, № 4, с. 23–26.

[10.01.2022]

Авторы: Корявин Алексей Родионович – доктор техн. наук, главный научный сотрудник Всероссийского электротехнического института (ВЭИ) – филиала ФГУП «Российский Федеральный Ядерный Центр – Всероссийский научно-исследовательский институт технической физики им. академ. Е.И. Забабахина» (РФЯЦ-ВНИИТФ), Москва, Россия.

Волкова Ольга Владимировна – кандидат техн. наук, ведущий научный сотрудник ВЭИ – филиала РФЯЦ-ВНИИТФ, Москва, Россия.

Elektrichestvo, 2022, No. 4, pp. 4–14

DOI:10.24160/0013-5380-2022-4-4-14

Assessment of the Effect the Height and Relative Position of Support Insulation Components Have on the Insulation Electrical Strength

KORYAVIN Aleksey R. (All-Russian Electrotechnical Institute – Branch of FSUE "RFNC-VNIITF named after academ. E.I. Zababakhin", Moscow, Russia) – Chief Scientific Officer, Dr. Sci. (Eng.).
 VOLKOVA Ol'ga V. (All-Russian Electrotechnical Institute – Branch of FSUE "RFNC-VNIITF named after"

academ. E.I. Zababakhin", Moscow, Russia) – Leading Researcher, Cand. Sci. (Eng.).

The article presents the results from studies of the effect the height and relative position of extra high voltage class support insulation components have on the insulation electrical strength when subjected to positive polarity switching impulses, at which the insulation minimum permissible overall dimensions are determined. It is shown that the highest values of the insulation flashover voltage are achieved when a leader discharge develops along purely air trajectories: screen--pedestal or screen-- plane. A similar result is obtained in the case of cascade flashovers from the screen over the column elements if the upper insulator structural height is significantly larger than that of the lower one. The reverse mutual arrangement of these insulators leads to a significant drop in the insulation flashover voltage during cascade flashovers. It is shown that at the final jump onset moment, the main contribution to the insulation flashover voltage value is introduced by the voltage drop across positive streamers, which is directly proportional to the length of these streamers. Hence it follows that the ambiguous effect of the height and mutual arrangement of the support insulation components on the insulation electrical strength during cascade flashovers is mainly due a significant difference in the lengths of the positive streamer zones at the final jump onset. With the upper insulator height equal to 2.7 m, the length of positive streamers at this moment is commensurable with the length of streamers when the flashover develops along purely air trajectories, whereas decreasing the upper insulator height by almost a half entails a significant decrease in the streamer lengths. Measures to eliminate undesirable cascade flashovers and ensure the highest electrical strength of support insulation are proposed.

K e y w o r d s: support insulation, cascade flashovers, electrical strength, positive polarity switching impulse

REFERENCES

1. GOST R 52034-2008. Izolyatory keramicheskie opornye na napryazhenie svyshe 1000 V. Obshchie tekhnicheskie usloviya (Ceramic Support Insulators for Voltage over 1000 V. General Specifications). M.: Standartinform, 2009, 28 p.

2. Aleksandrov G.N., Ivanov V.L. Izolyatsiya elektricheskih apparatov vysokogo napryazheniya (Insulation of High Voltage Electrical Devices). L.: Energoatomizdat, 1984, 208 p.

3. Slutskin L.S. Elektrichestvo – in Russ. (Electricity), 1978, No. 10, pp. 74–77.

4. **Beloedova I.P., et al.** *Raschet elektricheskih poley ustroystv vysokogo napryazheniya* (Calculation of Electric Fields of High Voltage Devices). M.: Izdatel'skiy dom MEI, 2008, 249 p.

5. Bazelyan E.M., Gorin B.N., Levitov V.I. *Fizicheskie i inzhenernye osnovy molniezashchity* (Physical and Engineering Fundamentals of Lightning Protection). L.: Gidrometeoizdat, 1978, 223 p.

6. Larionov V.P. Osnovy molniezashchity (Basics of Lightning Protection). M.: Znak, 1999, 103 p.

7. Larionov V.P. Elektrichestvo – in Russ. (Electricity), 1999, No. 4, pp. 51–58.

8. Syssoev V.S., Shcherbakov Yu.V. Electrical Strength of Ultra-Long Air Gaps, 2001, DOI:10.4271/2001-01-2898.

9. Gallimberti I., et al. Fundamental Processes in Long Air Gap Discharges. – C. R. Physique, 2002, No. 3, pp. 1335–1359.

10. **Carrara G., Thione L.** Switching surge strength of large air gaps: A physical approach. – IEEE Transactions on Power Apparatus and Systems, 1976, No. 2, pp. 512–524, DOI:10.1109/T-PAS.1976.32131.

11. **Carrara G., Pigini A., Thione L.** Switching Impulse Insulation Strength of Multi-Electrode Air Gaps. Application of the «Leader Inception Approach» to the Determination of the Switching Impulse Strength of Multi-Electrode Air Insulation. – Colloquium CIGRE, 1975, 33–75(SC).

12. Gorin B.N., Shkilev A.V. Elektrichestvo – in Russ. (Electricity), 1974, No. 2, pp. 29–38.

13. Volkova O.V., Koryavin A.R. Elektrichestvo – in Russ. (Electricity),1980, No. 3, pp. 46–47.

14. Koryavin A.R. Elektrotekhnika – in Russ. (Electrical Engineering), 1983, No. 4, pp. 23–26.

[10.01.2022]