Анализ повреждений подшипников тяговых машин на электроподвижном составе при питании от преобразователей частоты и напряжения

  • Виктор Дмитриевич Тулупов
  • Михаил Александрович Слепцов
  • Александрс Айнарович Бриедис
Ключевые слова: электропоезд, тяговый электропривод, преобразователь частоты и напряжения, подшипниковые токи, повреждение подшипников

Аннотация

Технико-экономическая эффективность электроподвижного состава (ЭПС) определяется показателями тяговогоэлектропривода, главные из них: стоимость изготовления, затраты на ремонт и обслуживание, срок службы, удельный расход энергии и надёжность работы. На современном ЭПС применяется асинхронный электропривод с широтно-импульсным регулированием напряжения и частотным управлением частоты вращения. Как показывает практика эксплуатации электроприводов с полупроводниковыми преобразователями, участились случаи ускоренного износа подшипников тяговых машин. Подшипниковые токи или токи навалу, которые обычно протекают от вала электрической машины через подшипники, известны со времени изобретения электрических машин. Недавние достижения в области силовой электроники резко расширили сферу применения асинхронных двигателей. В частности, инверторы с импульсной модуляцией (ШИМ) и высокими значениями частоты переключения позволяют электроприводу уменьшить акустический шум при более эффективном преобразовании энергии, однако инверторы также связаны с генерацией подшипниковых токов в асинхронных двигателях. В статье анализируются возможные причины возникновения подшипниковых токов. Показаны типичные изменения подшипников в результате прохождения электрического тока: процесс матирования тел качения, образование рифлений на дорожке проката, деградация смазки. Рассматривается влияние эксплуатационных параметров на частоту возникающих пробоев и распределение сил в подшипниковой системе в зависимости от нагрузки. Делается вывод о том, что потенциальную проблему подшипниковых токов необходимо решать конструкторскими, структурными и алгоритмическими способами на различных этапах проектирования и эксплуатации электротехнических комплексов с регулируемыми электроприводами.

Биографии авторов

Виктор Дмитриевич Тулупов

доктор техн. наук, профессор кафедры электротехнических комплексов автономных объектов и электрического транспорта НИУ «МЭИ».

Михаил Александрович Слепцов

кандидат техн. наук, доцент, профессор кафедры электротехнических комплексов автономных объектов и электрического транспорта НИУ «МЭИ».

Александрс Айнарович Бриедис

магистр техники и технологии, аспирант, ассистент кафедры электротехнических комплексов автономных объектов и электрического транспорта НИУ «МЭИ».

Литература

1. Тулупов В.Д., Бриедис А.А. Возможность улучшения энергетических показателей электропоездов за счёт модернизации схем силовых цепей. – Вест ник ЭИ, 2016, № 4, с. 83–87.

2. Zhuxia Fan, Yongjian Zhi, Bringquan Zhu et al. Research of Bearing Voltage and Bearing Current in Induction Motor Drive System. – 2016 Asia- Pacific International Symposium on Electromagnetic Compatibility (APEMC). Shenzhen, China, 2016. рр. 1195–1198. DOI: 10.1109/APEMC.2016.7522983.

3. Akagi H., Tamuramore S. A Passive EMI Filter for Eliminating Both Bearing Current and Ground Leakage Current From an Inverter-Driven Motor. – IEEE Tansactions on Power Electronics, 2006, vol. 21, No. 5, pp. 1459–1469. DOI: 10.1109/TPEL.2006.880239.

4. Kalaiselvi J., Srinivas S. Beareing Curreunts and Shaft Voltage Raduction in Dual-inverter-fed Open–end Winding Iduction Motors with Reduced CMV PWM Methods. – IEEE Transactions on Industrial Electronics, 2014, vol. 62, No. 1, pp.144–152. DOI: 10.1109/TIE.2014.2336614.

5. Saunders L.A., Skibinski G.L., Evon S.T., Kempkes D.L. Riding the reflected wave-IGBT drive technology demands new motor and cable considerations. Petroleum and Chemical Industry Conference, 1996, Records of Conference Papers. The Institute of Electrical and Electronics Engineers Incorporated Industry Applications Society 43rd Annual, 1996, pp. 75–84.

6. Busse D., Erdman J., Kerkman R.J., Schlegel D.W., Skibinski G. Bearing currents and their relationship to PWM drives. – Power Electronics, IEEE Transactions No. 12, 1997, 2, pp. 243–252.

7. Shaotang Chen, Lipo T.A., Fitzgerald D. Modeling of motor bearing currents in PWM inverter drives. – Industry Applications. IEEE Transactions No. 32 1996, 6, pp. 1365–1379.

8. Busse D., Erdman J.M., Kerkman R.J., Schlegel D.W., Skibinski G. The effects of PWM voltage source inverters on the mechanical perfomence of rolling bearings. – Industry Applications. IEEE Transactions No. 33 1997, 2, pp. 567–576.

9. Conraths H.J., Giessler F. u., Heining H.D. Shaft Voltage and Bearing Current- New Phenomena in Inverter Drive Induction Machines. – European Conf. on Power Electronics and Applications, EPE 99- ECCE Europe 1999.

10. Hausberg V., Seinsch H.O. Kapazitive Lagerspannungen und strome bei umrichtergespeisten Induktionsmaschinen. – Archiv fur elektrotechnik 82, 2000, 3/4, pp. 153–162.

11. Jing Quan, Baodong Bai, Yu Wang, Weifeng Liu. Research on Electrostatic shield for Discharge Bearing Currents Suppression in Variable-frequency Motors. – Intern. Conf. on Electrical Machines and Systems, 2014, pp. 139–143.

12. Muetze A., Binder A., Vogel H., Hering J. Experimental evaluation of the endangerment of ball bearings due to inverter-induced bearing currents. – Industry Applications Conf., 2004 39th Annual Meeting. Conf. Record of the 2004 IEEE, 2004, pp. 1989–1995.

13. Tischmacher H., Gattermann S. Bearing currents in converter operation. – Electrical Machines (ICEM). 2010 XIX Intern. Conf., 2010, pp. 1–8.

14. Tischmacher H., Gattermann S. Multiple signature analysis for the detection of bearing currents and the assessment of the resulting bearing wear. – Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2012, pp. 1354–1359.

15. Romanenko A., Ahola J., Muetze A. Influence of electric discharge activity on bearing lubricating grease degradation. – 2015 IEEE Energy Conversion Congress and Exposition, 2015, pp. 4851–4852.

16. Hurley S., Cann P.M., Spikes H.A. Lubrication and Reflow Properties of Thermally Aged Greases. – Tribology Transactions 43 (2000) 2, 2000, pp. 221–228.

17. Vasilev B.Yu., Kozyaruk A.E. Bearing Currents of Driving Machines in Drives with Semiconductor Transformer. – Bulletin of the South Ural State University. Ser. Power Engineering, 2016, vol.16 No. 3, pp. 93–100.

18. Magdun O., Gemeinder Y., Binder A. Investigation of influence of bearing load and bearing temperature on EDM bearing currents. – Energy Conversion Congress and Exposition (ECCE). 2010 IEEE, 2010, pp. 2733–2738.

19. Muetze A., Tamminen J., Ahola J. Influence of Motor Operating Parameters on Discharge Bearing Current Activity. – Industry Applications. IEEE Transactions on 47 (2011) 4, 2011, pp. 1767–1777.

#

1. Tulupov V.D., Briyedis A.A. Vozmozhnost’ uluchsheniya energeticheskikh pokazateley elektropoyezdov za schot modernizatsii skhem silovykh tsepey (Possibility of improving the energy performance of electric trains due to the modernization of power circuits). Vestnik MEI, 2016, № 4, pp. 83–87.

2. Zhuxia Fan, Yongjian Zhi, Bringquan Zhu et al. Research of Bearing Voltage and Bearing Current in Induction Motor Drive System. – 2016 Asia- Pacific International Symposium on Electromagnetic Compatibility (APEMC). Shenzhen, China, 2016. рр. 1195–1198. DOI: 10.1109/APEMC.2016.7522983.

3. Akagi H., Tamuramore S. A Passive EMI Filter for Eliminating Both Bearing Current and Ground Leakage Current From an Inverter-Driven Motor. – IEEE Tansactions on Power Electronics, 2006, vol. 21, No. 5, pp. 1459–1469. DOI: 10.1109/TPEL.2006.880239.

4. Kalaiselvi J., Srinivas S. Beareing Curreunts and Shaft Voltage Raduction in Dual-inverter-fed Open–end Winding Iduction Motors with Reduced CMV PWM Methods. – IEEE Transactions on Industrial Electronics, 2014, vol. 62, No. 1, pp.144–152. DOI: 10.1109/TIE.2014.2336614.

5. Saunders L.A., Skibinski G.L., Evon S.T., Kempkes D.L. Riding the reflected wave-IGBT drive technology demands new motor and cable considerations. Petroleum and Chemical Industry Conference, 1996, Records of Conference Papers. The Institute of Electrical and Electronics Engineers Incorporated Industry Applications Society 43rd Annual, 1996, pp. 75–84.

6. Busse D., Erdman J., Kerkman R.J., Schlegel D.W., Skibinski G. Bearing currents and their relationship to PWM drives. – Power Electronics, IEEE Transactions No. 12, 1997, 2, pp. 243–252.

7. Shaotang Chen, Lipo T.A., Fitzgerald D. Modeling of motor bearing currents in PWM inverter drives. – Industry Applications. IEEE Transactions No. 32 1996, 6, pp. 1365–1379.

8. Busse D., Erdman J.M., Kerkman R.J., Schlegel D.W., Skibinski G. The effects of PWM voltage source inverters on the mechanical perfomence of rolling bearings. Industry Applications. IEEE Transactions No. 33 1997, 2, pp. 567–576.

9. Conraths H.J., Giessler F. u., Heining H.D. Shaft Voltage and Bearing Current- New Phenomena in Inverter Drive Induction Machines. – European Conf. on Power Electronics and Applications, EPE 99- ECCE Europe 1999.

10. Hausberg V., Seinsch H.O. Kapazitive Lagerspannungen und strome bei umrichtergespeisten Induktionsmaschinen. – Archiv fur elektrotechnik 82, 2000, 3/4, pp. 153–162.

11. Jing Quan, Baodong Bai, Yu Wang, Weifeng Liu. Research on Electrostatic shield for Discharge Bearing Currents Suppression in Variable-frequency Motors. – Intern. Conf. on Electrical Machines and Systems, 2014, pp. 139–143.

12. Muetze A., Binder A., Vogel H., Hering J. Experimental evaluation of the endangerment of ball bearings due to inverter-induced bearing currents. – Industry Applications Conf., 2004 39th Annual Meeting. Conf. Record of the 2004 IEEE, 2004, pp. 1989–1995.

13. Tischmacher H., Gattermann S. Bearing currents in converter operation. – Electrical Machines (ICEM). 2010 XIX Intern. Conf., 2010, pp. 1–8.

14. Tischmacher H., Gattermann S. Multiple signature analysis for the detection of bearing currents and the assessment of the resulting bearing wear. – Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2012, pp. 1354–1359.

15. Romanenko A., Ahola J., Muetze A. Influence of electric discharge activity on bearing lubricating grease degradation. – 2015 IEEE Energy Conversion Congress and Exposition, 2015, pp. 4851–4852.

16. Hurley S., Cann P.M., Spikes H.A. Lubrication and Reflow Properties of Thermally Aged Greases. – Tribology Transactions 43 (2000) 2, 2000, pp. 221–228.

17. Vasilev B.Yu., Kozyaruk A.E. Bearing Currents of Driving Machines in Drives with Semiconductor Transformer. – Bulletin of the South Ural State University. Ser. Power Engineering, 2016, vol.16 No. 3, pp. 93–100.

18. Magdun O., Gemeinder Y., Binder A. Investigation of influence of bearing load and bearing temperature on EDM bearing currents. – Energy Conversion Congress and Exposition (ECCE). 2010 IEEE, 2010, pp. 2733–2738.

19. Muetze A., Tamminen J., Ahola J. Influence of Motor Operating Parameters on Discharge Bearing Current Activity. – Industry Applications. IEEE Transactions on 47 (2011) 4, 2011, pp. 1767–1777.

Опубликован
2020-11-09
Раздел
Статьи