Обзор высокотемпературных сверхпроводниковых электрических машин

  • Бруно Дуэйн
  • Хосин Менана
  • Кевин Бергер
  • Жан Левек
  • Константин Ковалев
  • Николай Иванов
Ключевые слова: высокотемпературный сверхпроводник, потери переменного тока, электрическая машина

Аннотация

Электрические машины являются важной частью различных энергетических и силовых систем. Применение высокотемпературных сверхпроводников (ВТСП) в электродвигателях – перспективное направление исследований, что связано с высокой токонесущей способностью ВТСП. В статье рассматриваются различные топологии сверхпроводящих электродвигателей и генераторов, использующих ВТСП. Дана характеристика ВТСП материалов, используемых для электрических машин. Приводится описание потерь переменного тока и криогенных систем. Представлена информация о реализации различных типов высокотемпературных сверхпроводниковых электрических машин, таких как машины с одной ВТСП обмоткой, полностью ВТСП машины, а также машины с ВТСП объемными элементами и стопками лент. Некоторые из этих машин являются полностью инновационными, а и их принцип работы строго связан только с наличием ВТСП материалов.

Биографии авторов

Бруно Дуэйн

доктор философии в области электротехники, профессор университета Лоррейн, Член Исследовательской группы «en Energie Electriquede Nancy», Нанси, Франция

Хосин Менана

доктор философии в области электротехники, старший преподаватель

Кевин Бергер

доктор философии в области электротехники, доцент университета Лоррейн, Член Исследовательской группы «en Energie Electriquede Nancy», Нанси, Франция

Жан Левек

доктор философии в области электротехники, профессор университета Лоррейн, Член Исследовательской группы «en Energie Electriquede Nancy», Нанси, Франция

Константин Ковалев

доктор техн. наук, заведующий кафедрой 310 «Электроэнергетические, электромеханические и биотехнические системы» Московского авиационного института (национального исследовательского университета), Москва, Россия

Николай Иванов

кандидат техн. наук, старший научный сотрудник кафедры 310 «Электроэнергетические, электромеханические и биотехнические системы» Московского авиационного института (национального исследовательского университета), Москва, Россия

Литература

1. Bretz E.A. Winner: superconductors on the high seas. New ship motors propel a quiet evolution. – IEEE Spectrum, January 2004, 41(1), pp. 60–67.
2. Carr W.J. AC loss and macroscopic theory of superconductors, Gordon and breach science publishers, 1983, 158 p.
3. Norris W.T. Calculation of hysteresis losses in hard superconductors carrying ac current: isolated conductors and edges of thin sheets. – J. Phys. D, 1970, vol. 3, pp. 489–506.
4. Douine B., Netter D., Leveque J., Rezzoug A. AC losses in a BSCCO current lead: comparison between calculation and measurement. – IEEE Transactions on Applied Superconductivity, 2002, vol. 12, No.1, pp. 1603–1606.
5. Douine B., Lévêque J., Netter D., Rezzoug A. Calculation of losses in a SHTc current lead with the help of the dimensional analysis. – Physica C, 2003, vol. 399, pp. 138–142.
6. Douine B., Berger K., Lévêque J., Netter D., Rezzoug A. Influence of Jc(B) on the full penetration current of superconducting tube. – Physica C, 2006, vol. 443, pp. 23–28.
7.Douine B., Berger K., Pienkos J., Lévêque J., Netter D. Analytical calculation of the instantaneous power in a current carrying superconducting tube with Jc(B). – IEEE Transactions on Applied Superconductivity, 2008, 18(3), pp.1717–1723.
8. Lévêque J., Douine B., Netter D. AC losses under self-field in a superconducting tube. – High Temperature Superconductivity 1, Springer Verlag, 2003, pp. 431–496.
9. Douine B., Lévêque J., Rezzoug A. AC losses measurements of a high critical superconductor transporting sinusoidal or non sinusoidal current. – IEEE Trans. Appl. Superconduct., 2000, vol. 10, No. 1, pp.1489–1492 [AIL 07].
10. Amemiya N., Miyamoto K., Banno N., Tsukamoto O. Numerical analysis of AC losses in high Tc superconductors based on E-j characteristics represented with n-value. – IEEE Trans. Appl. Superconduct., 1997, vol. 7, No. 2.
11. Bean C.P. Magnetization of high field superconductors. – Review of Modern Physics, 1964, pp. 31–39.
12. Berger K., Lévêque J., Netter D., Douine B., Rezzoug A. AC Transport losses in BSCCO current lead using thermal coupling with analytical formula. – IEEE Trans. Appl. Superconduct., 2005, vol. 15, No. 2, pp.1508–1511.
13. Berger K., Lévêque J., Netter D., Douine B., Rezzoug A. Influence of temperature and/or field dependence of the E-J power law on trapped magnetic field in bulk YBaCuO. – IEEE Trans. Appl. Superconduct., 2007, vol. 17, No. 2.
14. Dezhin1 D.S, Kovalev K.L, Verzhbitskiy L.G, Kozub S.S., Firsov1 V.P. Design and Testing of 200 kW Synchronous Motor with 2G HTS Field Coils. – IOP Conference Series: Earth and Environmental Science, 2017, vol. 87, Issue 3.
15. Yanamoto T., Izumi M., Yokoyama M., Umemoto K. Electric Propulsion Motor Development for Commercial Ships in Japan. – Proceedings of the IEEE 103 (12): 2333–2343, 2015.
16. Baik S.K., Park G.S. Load Test Analysis of High-Temperature Superconducting Synchronous Motors. – IEEE Trans. Appl. Superconduct., 2016, 26 (4): 1–4. doi:10.1109/TASC.2016.2530662.
17. Nick W., Frank M., Klaus G., Frauenhofer J., Neumuller H.W. Operational Experience With the World’s First 3600 Rpm 4 MVA Generator at Siemens. – IEEE Trans. Appl. Superconduct., 2007, 17(2), pp. 2030–2033. doi:10.1109/TASC.2007.899996.
18. Oota Tomoya, Atsuko Fukaya. Axial-Gap Superconducting Synchronous Motors Cooled by Liquid Nitrogen. Research, Fabrication and Applications of Bi-2223 HTS Wires 1: 451. 2016.
19. Rezzoug, A., Lévêque J., Douine B. Superconducting Machines. In Non-Conventional Electrical Machines, eds. A. Rezzoug and M. El-Hadi Zaim, John Wiley & Sons Inc., 2012. Chap. 4, pp. 191–255.
20. Kovalev K., Ivanov N., Zhuravlev S., Nekrasova Ju., Rusanov D., Kuznetsov G. Development and testing of 10 kW fully HTS generator. – Journal of Physics: Conference Series, Volume 1559, 14th European Conference on Applied Superconductivity (EUCAS2019) 1-5 September 2019, Glasgow, UK.
21. Masson P., Lévêque J., Netter D., Rezzoug A. Experimental study of a new kind of superconducting inductor. – IEEE Trans. Appl. Superconduct., 2003, vol. 13, No. 2.
22. Netter D., Lévêque J., Ailam E., Douine B., Rezzoug A. Theoretical study of a new kind HTS motor. – IEEE Trans. Appl. Superconduct. 2005, vol. 15, No. 2, pp. 2186–2189.
23. Colle A., Lubin, Thierry; Ayat, Sabrina; et al. Analytical Model for the Magnetic Field Distribution in a Flux Modulation Superconducting Machine, IEEE Transactions on Magnetics, 2019, vol. 55, 12.
24. Gruss S., et al. Superconducting bulk magnets: very high trapped fields and cracking. – Applied Physics Letters, 2001, vol. 79, No. 19, pp. 3131-3133, doi: 10.1063/1.1413502.
25. Trillaud F., Berger K., Douine B., Lévêque J. Comparaison berween modeling and experimental results of magnetic flux trapped. – IEEE Trans. Appl. Superconduct., 2016, vol. 26, No. 3, pp. 6800305.
26. Berger K., Gony B., Douine B., Lévêque J. Magnetization and Demagnetization Studies of an HTS Bulk in an Iron Core. – IEEE Trans. Appl. Superconduct., 2016, vol. 26, No. 4.
27. Hirakawa M. and al. Developments of superconducting motor with YBCO bulk magnets. – Physica, 2003, vol. 392-396, October.
28. Shaanika E., Miki M., Bocquel C., Felder B., Tsuzuki K., Ida T. Core Loss of a Bulk HTS Synchronous Machine at 2 and 3 T Rotor Magnetisation. – IEEE Trans. Appl. Supercond., 2020, vol.30, issue 1, doi: 10.1109/TASC.2019.2927587.
29. Matsuzaki H. and al. An axial gap-type HTS bulk synchronous motor excited by pulsed-field magnetization with vortex-type armature copperwindings. – IEEE Trans. Appl. Superconduct., 2005, vol. 15, No. 2, pp. 2222–2225.
30. Jiang Y., Pei R., Xian W., Hong Z., Coombs T.A. The design, magnetization and control of a superconducting permanent magnet synchronous motor, Supercond. Sci. Technol. 2008, 21, 065011, doi:10.1088/0953-2048/21/6/065011
#
1. Bretz E.A. Winner: superconductors on the high seas. New ship motors propel a quiet evolution. – IEEE Spectrum, January 2004, 41(1), pp. 60–67.
2. Carr W.J. AC loss and macroscopic theory of superconductors, Gordon and breach science publishers, 1983, 158 p.
3. Norris W.T. Calculation of hysteresis losses in hard superconductors carrying ac current: isolated conductors and edges of thin sheets. – J. Phys. D, 1970, vol. 3, pp. 489–506.
4. Douine B., Netter D., Leveque J., Rezzoug A. AC losses in a BSCCO current lead: comparison between calculation and measurement. – IEEE Transactions on Applied Superconductivity, 2002, vol. 12, No.1, pp. 1603–1606.
5. Douine B., Lévêque J., Netter D., Rezzoug A. Calculation of losses in a SHTc current lead with the help of the dimensional analysis. – Physica C, 2003, vol. 399, pp. 138–142.
6. Douine B., Berger K., Lévêque J., Netter D., Rezzoug A. Influence of Jc(B) on the full penetration current of superconducting tube. – Physica C, 2006, vol. 443, pp. 23–28.
7.Douine B., Berger K., Pienkos J., Lévêque J., Netter D. Analytical calculation of the instantaneous power in a current carrying superconducting tube with Jc(B). – IEEE Transactions on Applied Superconductivity, 2008, 18(3), pp.1717–1723.
8. Lévêque J., Douine B., Netter D. AC losses under self-field in a superconducting tube. – High Temperature Superconductivity 1, Springer Verlag, 2003, pp. 431–496.
9. Douine B., Lévêque J., Rezzoug A. AC losses measurements of a high critical superconductor transporting sinusoidal or non sinusoidal current. – IEEE Trans. Appl. Superconduct., 2000, vol. 10, No. 1, pp.1489–1492 [AIL 07].
10. Amemiya N., Miyamoto K., Banno N., Tsukamoto O. Numerical analysis of AC losses in high Tc superconductors based on E-j characteristics represented with n-value. – IEEE Trans. Appl. Superconduct., 1997, vol. 7, No. 2.
11. Bean C.P. Magnetization of high field superconductors. – Review of Modern Physics, 1964, pp. 31–39.
12. Berger K., Lévêque J., Netter D., Douine B., Rezzoug A. AC Transport losses in BSCCO current lead using thermal coupling with analytical formula. – IEEE Trans. Appl. Superconduct., 2005, vol. 15, No. 2, pp.1508–1511.
13. Berger K., Lévêque J., Netter D., Douine B., Rezzoug A. Influence of temperature and/or field dependence of the E-J power law on trapped magnetic field in bulk YBaCuO. – IEEE Trans. Appl. Superconduct., 2007, vol. 17, No. 2.
14. Dezhin1 D.S, Kovalev K.L, Verzhbitskiy L.G, Kozub S.S., Firsov1 V.P. Design and Testing of 200 kW Synchronous Motor with 2G HTS Field Coils. – IOP Conference Series: Earth and Environmental Science, 2017, vol. 87, Issue 3.
15. Yanamoto T., Izumi M., Yokoyama M., Umemoto K. Electric Propulsion Motor Development for Commercial Ships in Japan. – Proceedings of the IEEE 103 (12): 2333–2343, 2015.
16. Baik S.K., Park G.S. Load Test Analysis of High-Temperature Superconducting Synchronous Motors. – IEEE Trans. Appl. Superconduct., 2016, 26 (4): 1–4. doi:10.1109/TASC.2016.2530662.
17. Nick W., Frank M., Klaus G., Frauenhofer J., Neumuller H.W. Operational Experience With the World’s First 3600 Rpm 4 MVA Generator at Siemens. – IEEE Trans. Appl. Superconduct., 2007, 17(2), pp. 2030–2033. doi:10.1109/TASC.2007.899996.
18. Oota Tomoya, Atsuko Fukaya. Axial-Gap Superconducting Synchronous Motors Cooled by Liquid Nitrogen. Research, Fabrication and Applications of Bi-2223 HTS Wires 1: 451. 2016.
19. Rezzoug, A., Lévêque J., Douine B. Superconducting Machines. In Non-Conventional Electrical Machines, eds. A. Rezzoug and M. El-Hadi Zaim, John Wiley & Sons Inc., 2012. Chap. 4, pp. 191–255.
20. Kovalev K., Ivanov N., Zhuravlev S., Nekrasova Ju., Rusanov D., Kuznetsov G. Development and testing of 10 kW fully HTS generator. – Journal of Physics: Conference Series, Volume 1559, 14th European Conference on Applied Superconductivity (EUCAS2019) 1-5 September 2019, Glasgow, UK.
21. Masson P., Lévêque J., Netter D., Rezzoug A. Experimental study of a new kind of superconducting inductor. – IEEE Trans. Appl. Superconduct., 2003, vol. 13, No. 2.
22. Netter D., Lévêque J., Ailam E., Douine B., Rezzoug A. Theoretical study of a new kind HTS motor. – IEEE Trans. Appl. Superconduct. 2005, vol. 15, No. 2, pp. 2186–2189.
23. Colle A., Lubin, Thierry; Ayat, Sabrina; et al. Analytical Model for the Magnetic Field Distribution in a Flux Modulation Superconducting Machine, IEEE Transactions on Magnetics, 2019, vol. 55, 12.
24. Gruss S., et al. Superconducting bulk magnets: very high trapped fields and cracking. – Applied Physics Letters, 2001, vol. 79, No. 19, pp. 3131-3133, doi: 10.1063/1.1413502.
25. Trillaud F., Berger K., Douine B., Lévêque J. Comparaison berween modeling and experimental results of magnetic flux trapped. – IEEE Trans. Appl. Superconduct., 2016, vol. 26, No. 3, pp. 6800305.
26. Berger K., Gony B., Douine B., Lévêque J. Magnetization and Demagnetization Studies of an HTS Bulk in an Iron Core. – IEEE Trans. Appl. Superconduct., 2016, vol. 26, No. 4.
27. Hirakawa M. and al. Developments of superconducting motor with YBCO bulk magnets. – Physica, 2003, vol. 392-396, October.
28. Shaanika E., Miki M., Bocquel C., Felder B., Tsuzuki K., Ida T. Core Loss of a Bulk HTS Synchronous Machine at 2 and 3 T Rotor Magnetisation. – IEEE Trans. Appl. Supercond., 2020, vol.30, issue 1, doi: 10.1109/TASC.2019.2927587.
29. Matsuzaki H. and al. An axial gap-type HTS bulk synchronous motor excited by pulsed-field magnetization with vortex-type armature copperwindings. – IEEE Trans. Appl. Superconduct., 2005, vol. 15, No. 2, pp. 2222–2225.
30. Jiang Y., Pei R., Xian W., Hong Z., Coombs T.A. The design, magnetization and control of a superconducting permanent magnet synchronous motor, Supercond. Sci. Technol. 2008, 21, 065011, doi:10.1088/0953-2048/21/6/065011
Опубликован
2021-01-15
Раздел
Статьи