Закрепление потока в сильных магнитных полях в проводниках с покрытием REBa2Cu3O7-x

  • Тунсинь ВАН
  • Дасин ХУАН
  • Хунвэй ГУ
  • Фучжоу ДИНЬ
Ключевые слова: REBa2Cu3O7-x, закрепление потока, сильные магнитные поля

Аннотация

REBa2Cu3O7-x (REBCO) – основа высокотемпературных сверхпроводящих лент второго поколения – отличается прекрасными характеристиками, такими как высокое необратимое поле (7 Т) и высокая пропускная способность по току (77 К, 106 А/см2). REBCO рассматривается как потенциальный выбор для применения в условиях сильных магнитных полей (ускорители, магнитно-резонансная томография (МРТ)). В последние годы была разработана тонкопленочная технология эпитаксии и двухосных текстур на основе гибких подложек, которая может помочь преодолеть слабое соединение границ зерен и плохие механические свойства REBCO. Однако серьезной проблемой остается ухудшение критической плотности тока Jc в этих пленках из-за вихревого движения в их магнитном поле. Установлено, что закрепление потока в проводниках с покрытием REBCO может улучшить критическую плотность тока при высоких магнитных полях, что означает благоприятные условия для применения REBCO в будущем. В статье кратко описывается механизм, вводные методы и изменчивость закрепления магнитного потока в зависимости от условий окружающей среды. Описан процесс закрепления проводников с покрытием REBCO потоком при высоких магнитных полях. Проведен анализ идеальной структуры закрепления магнитного потока проводников с покрытием REBCO в сильном магнитном поле.

Биографии авторов

Тунсинь ВАН

научный сотрудник Ключевой лаборатории прикладной сверхпроводимости, институт электротехники, Китайская академия наук, Пекин, Китай.

Дасин ХУАН

PhD, доцент, институт электротехники, Китайская академия наук, Пекин, Китай.

Хунвэй ГУ

PhD, профессор, институт электротехники, Китайская академия наук, Пекин, Китай.

Фучжоу ДИНЬ

PhD, профессор, институт электротехники, Китайская академия наук, Пекин, Китай.

Литература

1. Onnes H.K. Further Experiments with Liquid Helium D - On the Change of the electrical Resistance of Pure Metals at Very Low Temperatures, etc V The Disappearance of the Resistance of Mercu-ry. – Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam, 1911, 14, pp. 113–115.
2. Bednorz J.G., Muller K.A. Possible High-Tc Superconductivity in the Ba-La-Cu-O System. – Zeitschrift Fur Physik B-Condensed Matter, 1986, 64(2), pp. 189–193.
3. Maeda H. et al. A New High-Tc Oxide Superconductor without a Rare-Earth Element. – Japanese Journal of Applied Physics, 1988, 27 (Part 2, No.2), pp. L209–L210, DOI:10.1143/jjap.27.l209.
4. Macmanus-Driscoll J.L., Wimbush S.C. Processing and Ap-pli-cation of High-Temperature Superconducting Coated Conductors. – Nature Reviews Materials, 2021, 6(7), pp. 587–604, DOI:10.1038/s41578-021-00290-3.
5. Nagamatsu J. et al. Superconductivity at 39 K in Magnesium Diboride. – Nature, 2001, 410(6824), pp. 63–64, DOI:10.1038/35065039.
6. Kamihara Y. et al. Iron-Based Layered Superconductor La O1-xFxFeAs (x = 0.05–0.12) with Tc = 26 K. – Journal of the Ameri-can Chemical Society, 2008, 130(11), pp. 3296–3297, DOI:10.1021/ja800073m.
7. Wen H.H. et al. Superconductivity at 25K in Hole-Doped (La(1-x)Sr4(x))OFeAs. – EPL (Europhysics Letters), 2008, 82(1), DOI:10.1209/0295-5075/82/17009.
8. Yao C., Ma Y. Superconducting Materials: Challenges and Opportunities for Large-Scale Applications. – iScience, 2021, 24(6): 102541, DOI:10.1016/j.isci.2021.102541.
9. Hilgenkamp H., Mannhart J. Grain Boundaries in High-T-c Superconductors. – Review of Modern Physics, 2002, 74(2), pp. 485–549, DOI:10.1103/RevModPhys.74.485.
10. Goyal A. et al. Epitaxial Superconductors on Rolling-Assisted Biaxially-Textured Substrates (RABiTS): A Route Towards High Critical Current Density Wire. – Applied Superconductivity, 1996, 4(10-11), pp. 403–427, DOI:10.1016/S0964-1807(97)00029-X.
11. Goyal A. et al. Recent Progress in the Fabrication of High-J(c) Tapes by Epitaxial Deposition of YBCO on RABiTS. – Physica C, 2001, vol. 357, pp. 903–913.
12. Rupich M.W. et al. YBCO Coated Conductors by an MOD/RABiTS (TM) Process. – Transactions on Applied Superconductivity, 2003, 13(2), pp. 2458–2461, DOI:10.1109/TASC.2003.811820.
13. Goyal A., Paranthaman M.P., Schoop U. The RABiTS Approach: Using Rolling-Assisted Biaxially Textured Substrates for High-Performance YBCO Superconductors. – MRS Bulletin, 2004, 29(08), pp. 552–561, DOI:10.1557/mrs2004.161.
14. Wu X.D. et al. High-Current YBa2Cu3O7-Delta Thick-Films on Flexible Nickel Substrates with Textured Buffer Layers. – Applied Physics Letters, 1994, 65(15), pp. 1961–1963.
15. Wang C.P. et al. Deposition of in-Plane Textured MgO on Amorphous Si3N4 Substrates by Ion-Beam-Assisted Deposition and Comparisons with Ion-Beam-Assisted Deposited Yttria-Stabilized-Zirconia. – Applied Physics Letters, 1997, 71(20), pp. 2955–2957.
16. Arendt P.N., Foltyn S.R. Biaxially Textured IBAD-MgO Templates for YBCO-Coated Conductors. – MRS Bulletin, 2004, 29(8), pp. 543–550.
17. Obradors X. et al. Progress Towards All-Chemical Super-conducting YBa2Cu3O7-Coated Conductors. – Superconductor Science & Technology, 2006, 19(3), pp. S13–S26.
18. Hasegawa K. et al. Biaxially Aligned YBCO Film Tapes Fabricated by All Pulsed Laser Deposition. – Applied Superconductivity, 1996, 4(10-11), pp. 487–493.
19. Bauer M., Semerad R., Kinder H. YBCO Films on Metal Substrates with Biaxially Aligned MgO Buffer Layers. – IEEE Transactions on Applied Superconductivity, 1999, 9(2), pp. 1502–1505.
20. The National High Magnetic Field Laboratory [Электрон. ресурс], URL: https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots (дата обращения 10.07.2023).
21. Foltyn S.R. et al. Materials Science Challenges for High-Temperature Superconducting Wire. – Nature Materials, 2007, 6(9), pp. 631–642.
22. Jian Zhang et al. Progress in the Study of Vortex Pinning Centers in High-Temperature Superconducting Films. – Nanomaterials, 2022, 12: 4000, DOI:10.3390/nano12224000.
23. Kwok W.K. et al. Vortices in High-Performance High-Temperature Superconductors. – Reports on Progress in Physics, 2016, 79(11): 116501, DOI:10.1088/0034-4885/79/11/116501.
24. Puig T. et al. Vortex Pinning in Chemical Solution Nano-structured YBCO Films. – Superconductor Science and Technology, 2008, 21(3), DOI:10.1088/0953-2048/21/3/034008.
25. Blatter G., Geshkenbein V.B., Larkin A. From Isotropic to Anisotropic Superconductors: A Scaling Approach. – Physical Review Letters,1992, 68: 875, DOI:10.1103/PhysRevLett.68.875.
26. Christen D.K., Thompson J.R. Current Problems at High Tc. – Nature, 1993, vol. 364, No. 6433: 98.
27. Feighan J.P.F. et al. Materials Design for Artificial Pinning Centers in Superconductor PLD Coated Conductors. – Superconductor Science and Technology, 2017, 30 (12), DOI:10.1088/1361-6668/aa90d1.
28. Mele P. et al. Ultra-High Flux Pinning Properties of BaMO3-doped YBa2Cu3O7−x Thin Films (M = Zr, Sn). – Superconductor Science and Technology, 2008, 21 (3), DOI:10.1088/0953-2048/21/3/032002.
29. Karapetrov G. et al. Adjustable Superconducting Anisotropy in MoGe-Permalloy Hybrids. – Journal of Physics Conference Series, 2009, 150(5):052095, DOI:10.1088/1742-6596/150/5/052095.
30. Selvamanickam V. et al. The Low-Temperature, High-Magnetic-Field Critical Current Characteristics of Zr-Added (Gd,Y)Ba2Cu3Ox Superconducting Tapes. – Superconductor Science and Tech-nology, 2012, 25: 125013, DOI:10.1088/0953-2048/25/12/125013.
31. Maiorov B. et al. Synergetic Combination of Different Types of Defect to Optimize Pinning Landscape Using BaZrO(3)-doped YBa(2)Cu(3)O(7). – Nature Materials, 2009, 8(5), pp. 398–404, DOI:10.1038/nmat2408.
32. Feighan J.P.F., Kursumovic A., MacManus-Driscoll J. Materials Design for Artificial Pinning Centres in Superconductor PLD Coated Conductors. – Superconductor Science and Technology, 2017, 30(12), DOI:10.1088/1361-6668/aa90d1.
33. Tang X. et al. Effect of BaZrO3/Ag Hybrid Doping to the Microstructure and Performance of Fluorine-Free MOD Method Derived YBa2Cu3O7-x Superconducting Thin Films. – Journal of Materials Science-Materials in Electronics, 2015, 26(3), pp. 1806–1811, DOI:10.1007/s10854-014-2614-7.
34. Wang H.Y. et al. Microstructure and Superconducting Properties of (BaTiO3, Y2O3)-doped YBCO Films under Different Firing Temperatures. – Rare Metals, 2017, 36(1), pp. 37–41, DOI:10.1007/s12598-015-0606-2.
35. Wang H.Y. et al. Strongly Enhanced Flux Pinning in the YBa2Cu3O7-X Films with the Co-Doping of BaTiO3 Nanorod and Y2O3 Nanoparticles at 65 K. – Chinese Physics B, 2015, 24(9): 097401, DOI:10.1088/1674-1056/24/9/097401.
36. Li M.Y. et al. Microstructures Property and Improved J(c) of Eu-Doped YBa2Cu3.6O7-delta Thin Films by Trifluoroacetate Metal Organic Deposition Process. – Journal of Superconductivity and Novel Magnetism, 2017, 30(5), pp. 1137–1143.
37. Chen J. et al. Nucleation and Epitaxy Growth of High-Entropy REBa2Cu3O(7-δ)(RE = Y, Dy, Gd, Sm, Eu) thin Films by Metal Organic Deposition. – Journal of Rare Earths, 2023,41(07), pp. 1091–1098.
38. Blatter G. et al. Vortices in High-Temperature Superconduc-tors. – Reviews of Modern Physics, 1994, 66(4), pp. 1125–1388.
39. Jha A.K., Khare N., Pinto R. Influence of Interfacial LSMO Nanoparticles/Layer on the Vortex Pinning Properties of YBCO Thin Film. – Journal of Superconductivity and Novel Magnetism, 2014, 27(4), pp. 1021–1026.
40. Macmanus-Driscoll J.L. et al. Strongly Enhanced Current Densities in Superconducting Coated Conductors of YBa2Cu3O7-x + + BaZrO3. – Nature Materials, 2004, 3(7), pp. 439–443.
41. Selvamanickam V. et al. Critical Current Density Above 15 MA cm−2 at 30 K, 3 T in 2.2 μm thick Heavily-Doped (Gd,Y)Ba2Cu3Ox Superconductor Tapes. – Superconductor Science and Technology. 2015, 28(7), DOI:10.1088/0953-2048/28/7/072002.
42. Xu A.X. et al. Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors. – IEEE Transactions on Applied Superconductivity, 2015, 25(3), DOI: 10.1109/TASC.2014.2375231.
43. Llordés A. Nanoscale Strain-Induced Pair Suppression as a Vortex-Pinning Mechanism in High-Temperature Superconductors. – Nature Materials, 2012, 11(4), pp. 329–336, DOI:10.1038/nmat3247.
44. Coll M. et al. Size-Controlled Spontaneously Segregated Ba2YTaO6 Nanoparticles in YBa2Cu3O7 Nanocomposites Obtained by Chemical Solution Deposition. – Superconductor Science and Technology, 2014, 27: 044008, DOI:10.1088/0953-2048/27/4/044008.
45. Coll M. et al. Solution-Derived YBa2Cu3O7 Nanocomposite Films with a Ba2YTaO6 Secondary Phase for Improved Superconducting Properties. – Superconductor Science and Technology, 2013, 26(1): 015001, DOI:10.1088/0953-2048/26/1/015001.
46. Horita H. et al. Miniaturization of BaHfO3 Nanoparticles in YBa2Cu3Oy-Coated Conductors Using a Two-Step Heating Process in the TFA-MOD Method. – Superconductor Science and Technology, 2017, 30: 025022.
47. Miura M. et al. Tuning Nanoparticle Size for Enhanced Functionality in Perovskite Thin Films Deposited by Metal Organic Deposition. – NPG Asia Mater., 2017, 9(11): am2017197, DOI:10.1038/am.2017.197.
48. Nakaoka K. et al. Another Approach For Controlling Size and Distribution of Nanoparticles in Coated Conductors Fabricated by the TFA-MOD Method. – Superconductor Science and Technology, 2017, 30(5): 055008, DOI:10.1088/1361-6668/aa66e1,
49. Cayado P. et al. Epitaxial YBa2Cu3O7−x Nanocomposite Thin Films from Colloidal Solutions. – Superconductor Science and Technology, 2015, 28(12): 124007, DOI:10.1088/0953-2048/28/ 12/124007.
50. De Keukeleere K. et al. Superconducting YBa2Cu3O7–δ Nanocomposites Using Preformed ZrO2 Nanocrystals: Growth Mechanisms and Vortex Pinning Properties. – Advanced Electronic Materials, 2016, 2 (10), DOI:10.1002/aelm.201600161.
51. Bartolomé E. et al. Hybrid YBa2Cu3O7 Superconducting–Ferromagnetic Nanocomposite Thin Films Prepared from Colloidal Chemical Solutions. – Advanced Electronic Materials, 2017, DOI:10.1002/aelm.201700037.
52. Solano E. et al. Facile and efficient One-Pot Solvothermal and Microwave-Assisted Synthesis of Stable Colloidal Solutions of MFe2O4 Spinel Magnetic Nanoparticles. – Journal of Nanoparticle Research, 2012, 14: 1034, DOI:10.1007/s11051-012-1034-y.
53. De Keukeleere K. et al. Fast and Tunable Synthesis of ZrO2 Nanocrystals: Mechanistic Insights into Precursor Dependence. – Inorganic Chemistry, 2015, 54(7), pp. 3469–3476, DOI: 10.1021/acs.inorgchem.5b00046.
54. Obradors X. et al. Epitaxial YBa2Cu3O7−x Nanocomposite Films and Coated Conductors from BaMO3 (M = Zr, Hf) Colloidal Solutions. – Superconductor Science and Technology, 2018, 31(4), DOI: 10.1088/1361-6668/aaaad7.
55. Xu A. et al. Strongly Enhanced Vortex Pinning from 4 to 77 K in Magnetic Fields up to 31 T in 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O Superconducting Tapes. – APL Materials, 2014, vol. 2 (4), DOI: 10.1063/1.4872060.
#
REFERENCES
1. Onnes H.K. Further Experiments with Liquid Helium D – On the Change of the electrical Resistance of Pure Metals at Very Low Temperatures, etc V The Disappearance of the Resistance of Mercury. – Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam, 1911, 14, pp. 113–115.
2. Bednorz J.G., Muller K.A. Possible High-Tc Superconductivity in the Ba-La-Cu-O System. – Zeitschrift Fur Physik B-Condensed Matter, 1986, 64(2), pp. 189–193.
3. Maeda H. et al. A New High-Tc Oxide Superconductor without a Rare-Earth Element. – Japanese Journal of Applied Physics, 1988, 27 (Part 2, No.2), pp. L209–L210, DOI:10.1143/jjap.27.l209.
4. Macmanus-Driscoll J.L., Wimbush S.C. Processing and Application of High-Temperature Superconducting Coated Conductors. – Nature Reviews Materials, 2021, 6(7), pp. 587–604, DOI:10.1038/s41578-021-00290-3.
5. Nagamatsu J. et al. Superconductivity at 39 K in Magnesium Diboride. – Nature, 2001, 410(6824), pp. 63–64, DOI:10.1038/35065039.
6. Kamihara Y. et al. Iron-Based Layered Superconductor La O1-xFxFeAs (x = 0.05–0.12) with Tc = 26 K. – Journal of the American Chemical Society, 2008, 130(11), pp. 3296–3297, DOI:10.1021/ja800073m.
7. Wen H.H. et al. Superconductivity at 25K in Hole-Doped (La(1-x)Sr4(x))OFeAs. – EPL (Europhysics Letters), 2008, 82(1), DOI:10.1209/0295-5075/82/17009.
8. Yao C., Ma Y. Superconducting Materials: Challenges and Opportunities for Large-Scale Applications. – iScience, 2021, 24(6): 102541, DOI:10.1016/j.isci.2021.102541.
9. Hilgenkamp H., Mannhart J. Grain Boundaries in High-T-c Superconductors. – Review of Modern Physics, 2002, 74(2), pp. 485–549, DOI:10.1103/RevModPhys.74.485.
10. Goyal A. et al. Epitaxial Superconductors on Rolling-Assisted Biaxially-Textured Substrates (RABiTS): A Route Towards High Critical Current Density Wire. – Applied Superconductivity, 1996, 4(10-11), pp. 403–427, DOI:10.1016/S0964-1807(97)00029-X.
11. Goyal A. et al. Recent Progress in the Fabrication of High-J(c) Tapes by Epitaxial Deposition of YBCO on RABiTS. – Physica C, 2001, vol. 357, pp. 903–913.
12. Rupich M.W. et al. YBCO Coated Conductors by an MOD/RABiTS (TM) Process. – Transactions on Applied Superconductivity, 2003, 13(2), pp. 2458–2461, DOI:10.1109/TASC.2003.811820.
13. Goyal A., Paranthaman M.P., Schoop U. The RABiTS Approach: Using Rolling-Assisted Biaxially Textured Substrates for High-Performance YBCO Superconductors. – MRS Bulletin, 2004, 29(08), pp. 552–561, DOI:10.1557/mrs2004.161.
14. Wu X.D. et al. High-Current YBa2Cu3O7-Delta Thick-Films on Flexible Nickel Substrates with Textured Buffer Layers. – Applied Physics Letters, 1994, 65(15), pp. 1961–1963.
15. Wang C.P. et al. Deposition of in-Plane Textured MgO on Amorphous Si3N4 Substrates by Ion-Beam-Assisted Deposition and Comparisons with Ion-Beam-Assisted Deposited Yttria-Stabilized-Zirconia. – Applied Physics Letters, 1997, 71(20), pp. 2955–2957.
16. Arendt P.N., Foltyn S.R. Biaxially Textured IBAD-MgO Templates for YBCO-Coated Conductors. – MRS Bulletin, 2004, 29(8), pp. 543–550.
17. Obradors X. et al. Progress Towards All-Chemical Superconducting YBa2Cu3O7-Coated Conductors. – Superconductor Science & Technology, 2006, 19(3), pp. S13–S26.
18. Hasegawa K. et al. Biaxially Aligned YBCO Film Tapes Fabricated by All Pulsed Laser Deposition. – Applied Superconductivity, 1996, 4(10-11), pp. 487–493.
19. Bauer M., Semerad R., Kinder H. YBCO Films on Metal Substrates with Biaxially Aligned MgO Buffer Layers. – IEEE Transactions on Applied Superconductivity, 1999, 9(2), pp. 1502–1505.
20. The National High Magnetic Field Laboratory [Electron. Resource], URL: https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots (Date of appeal 10.07.2023).
21. Foltyn S.R. et al. Materials Science Challenges for High-Temperature Superconducting Wire. – Nature Materials, 2007, 6(9), pp. 631–642.
22. Jian Zhang et al. Progress in the Study of Vortex Pinning Centers in High-Temperature Superconducting Films. – Nanomaterials, 2022, 12: 4000, DOI:10.3390/nano12224000.
23. Kwok W.K. et al. Vortices in High-Performance High-Temperature Superconductors. – Reports on Progress in Physics, 2016, 79(11): 116501, DOI:10.1088/0034-4885/79/11/116501.
24. Puig T. et al. Vortex Pinning in Chemical Solution Nanostructured YBCO Films. – Superconductor Science and Techno-logy, 2008, 21(3), DOI:10.1088/0953-2048/21/3/034008.
25. Blatter G., Geshkenbein V.B., Larkin A. From Isotropic to Anisotropic Superconductors: A Scaling Approach. – Physical Review Letters,1992, 68: 875, DOI:10.1103/PhysRevLett.68.875.
26. Christen D.K., Thompson J.R. Current Problems at High Tc. – Nature, 1993, vol. 364, No. 6433: 98.
27. Feighan J.P.F. et al. Materials Design for Artificial Pinning Centers in Superconductor PLD Coated Conductors. – Superconductor Science and Technology, 2017, 30 (12), DOI:10.1088/1361-6668/aa90d1.
28. Mele P. et al. Ultra-High Flux Pinning Properties of BaMO3-doped YBa2Cu3O7−x Thin Films (M = Zr, Sn). – Superconductor Science and Technology, 2008, 21 (3), DOI:10.1088/0953-2048/21/3/032002.
29. Karapetrov G. et al. Adjustable Superconducting Anisotropy in MoGe-Permalloy Hybrids. – Journal of Physics Conference Series, 2009, 150(5):052095, DOI:10.1088/1742-6596/150/5/052095.
30. Selvamanickam V. et al. The Low-Temperature, High-Magnetic-Field Critical Current Characteristics of Zr-Added (Gd,Y)Ba2Cu3Ox Superconducting Tapes. – Superconductor Science and Technology, 2012, 25: 125013, DOI:10.1088/0953-2048/25/12/125013.
31. Maiorov B. et al. Synergetic Combination of Different Types of Defect to Optimize Pinning Landscape Using BaZrO(3)-doped YBa(2)Cu(3)O(7). – Nature Materials, 2009, 8(5), pp. 398–404, DOI:10.1038/nmat2408.
32. Feighan J.P.F., Kursumovic A., MacManus-Driscoll J. Materials Design for Artificial Pinning Centres in Superconductor PLD Coated Conductors. – Superconductor Science and Technology, 2017, 30(12), DOI:10.1088/1361-6668/aa90d1.
33. Tang X. et al. Effect of BaZrO3/Ag Hybrid Doping to the Microstructure and Performance of Fluorine-Free MOD Method Derived YBa2Cu3O7-x Superconducting Thin Films. – Journal of Materials Science-Materials in Electronics, 2015, 26(3), pp. 1806–1811, DOI:10.1007/s10854-014-2614-7.
34. Wang H.Y. et al. Microstructure and Superconducting Properties of (BaTiO3, Y2O3)-doped YBCO Films under Different Firing Temperatures. – Rare Metals, 2017, 36(1), pp. 37–41, DOI:10.1007/s12598-015-0606-2.
35. Wang H.Y. et al. Strongly Enhanced Flux Pinning in the YBa2Cu3O7-X Films with the Co-Doping of BaTiO3 Nanorod and Y2O3 Nanoparticles at 65 K. – Chinese Physics B, 2015, 24(9): 097401, DOI:10.1088/1674-1056/24/9/097401.
36. Li M.Y. et al. Microstructures Property and Improved J(c) of Eu-Doped YBa2Cu3.6O7-delta Thin Films by Trifluoroacetate Metal Organic Deposition Process. – Journal of Superconductivity and Novel Magnetism, 2017, 30(5), pp. 1137–1143.
37. Chen J. et al. Nucleation and Epitaxy Growth of High-Entropy REBa2Cu3O(7-δ)(RE=Y, Dy, Gd, Sm, Eu)thin Films by Metal Organic Deposition. – Journal of Rare Earths, 2023,41(07), pp. 1091–1098.
38. Blatter G. et al. Vortices in High-Temperature Superconductors. – Reviews of Modern Physics, 1994, 66(4), pp. 1125–1388.
39. Jha A.K., Khare N., Pinto R. Influence of Interfacial LSMO Nanoparticles/Layer on the Vortex Pinning Properties of YBCO Thin Film. – Journal of Superconductivity and Novel Magnetism, 2014, 27(4), pp. 1021–1026.
40. Macmanus-Driscoll J.L. et al. Strongly Enhanced Current Densities in Superconducting Coated Conductors of YBa2Cu3O7-x + BaZrO3. – Nature Materials, 2004, 3(7), pp. 439–443.
41. Selvamanickam V. et al. Critical Current Density Above 15 MA cm−2 at 30 K, 3 T in 2.2 μm thick Heavily-Doped (Gd,Y)Ba2Cu3Ox Superconductor Tapes. – Superconductor Science and Technology. 2015, 28(7), DOI:10.1088/0953-2048/28/7/072002.
42. Xu A.X. et al. Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors. – IEEE Transactions on Applied Superconductivity, 2015, 25(3), DOI: 10.1109/TASC.2014.2375231.
43. Llordés A. Nanoscale Strain-Induced Pair Suppression as a Vortex-Pinning Mechanism in High-Temperature Superconductors. – Nature Materials, 2012, 11(4), pp. 329–336, DOI:10.1038/nmat3247.
44. Coll M. et al. Size-Controlled Spontaneously Segregated Ba2YTaO6 Nanoparticles in YBa2Cu3O7 Nanocomposites Obtained by Chemical Solution Deposition. – Superconductor Science and Technology, 2014, 27: 044008, DOI:10.1088/0953-2048/27/4/044008.
45. Coll M. et al. Solution-Derived YBa2Cu3O7 Nanocomposite Films with a Ba2YTaO6 Secondary Phase for Improved Superconducting Properties. – Superconductor Science and Technology, 2013, 26(1): 015001, DOI:10.1088/0953-2048/26/1/015001.
46. Horita H. et al. Miniaturization of BaHfO3 Nanoparticles in YBa2Cu3Oy-Coated Conductors Using a Two-Step Heating Process in the TFA-MOD Method. – Superconductor Science and Technology, 2017, 30: 025022.
47. Miura M. et al Tuning Nanoparticle Size for Enhanced Functionality in Perovskite Thin Films Deposited by Metal Organic Deposition. – NPG Asia Mater., 2017, 9(11): am2017197, DOI:10.1038/am.2017.197.
48. Nakaoka K. et al. Another Approach For Controlling Size and Distribution of Nanoparticles in Coated Conductors Fabricated by the TFAMOD Method. – Superconductor Science and Technology, 2017, 30(5): 055008, DOI:10.1088/1361-6668/aa66e1,
49. Cayado P. et al. Epitaxial YBa2Cu3O7−x Nanocomposite Thin Films from Colloidal Solutions. – Superconductor Science and Technology, 2015, 28(12): 124007, DOI:10.1088/0953-2048/28/12/124007.
50. De Keukeleere K. et al. Superconducting YBa2Cu3O7–δ Nanocomposites Using Preformed ZrO2 Nanocrystals: Growth Mechanisms and Vortex Pinning Properties. – Advanced Electronic Materials, 2016, 2 (10), DOI:10.1002/aelm.201600161.
51. Bartolomé E. et al. Hybrid YBa2Cu3O7 Superconducting–Ferromagnetic Nanocomposite Thin Films Prepared from Colloidal Chemical Solutions. – Advanced Electronic Materials, 2017, DOI:10.1002/aelm.201700037.
52. Solano E. et al. Facile and efficient One-Pot Solvothermal and Microwave-Assisted Synthesis of Stable Colloidal Solutions of MFe2O4 Spinel Magnetic Nanoparticles. – Journal of Nanoparticle Research, .2012, 14: 1034, DOI:10.1007/s11051-012-1034-y.
53. De Keukeleere K. et al. Fast and Tunable Synthesis of ZrO2 Nanocrystals: Mechanistic Insights into Precursor Dependence. – Inorganic Chemistry, 2015, 54(7), pp. 3469–3476, DOI: 10.1021/acs.inorgchem.5b00046.
54. Obradors X. et al. Epitaxial YBa2Cu3O7−x Nanocomposite Films and Coated Conductors from BaMO3 (M=Zr, Hf) Colloidal Solutions. – Superconductor Science and Technology, 2018, 31(4), DOI: 10.1088/1361-6668/aaaad7.
55. Xu A. et al. Strongly Enhanced Vortex Pinning from 4 to 77 K in Magnetic Fields up to 31 T in 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O Superconducting Tapes. – APL Materials, 2014, vol. 2 (4), DOI: 10.1063/1.4872060
Опубликован
2023-10-26
Раздел
Статьи