Влияние объектов микрогенерации на качество электроэнергии в распределительных электрических сетях
Аннотация
В статье представлены результаты исследования особенностей влияния объектов микрогенерации на базе фотоэлектрических преобразователей на показатели качества электроэнергии, относящиеся к медленным изменениям (отклонению) напряжения и несимметрии трехфазной системы напряжений. Показано, что ухудшение качества электроэнергии обусловливают возникновение обратных потоков мощности и подключение однофазных объектов микрогенерации. Определены ключевые факторы, оказывающие влияние на качество функционирования низковольтных распределительных электрических сетей с объектами микрогенерации на базе фотоэлектрических преобразователей. Показана недостаточная эффективность регулирования реактивной мощности инверторами для поддержания качества электроэнергии при потенциальном росте количества внедренных объектов микрогенерации на базе фотоэлектрических преобразователей. На основе анализа мирового опыта и известных положений разработан новый теоретический подход к повышению качества функционирования низковольтных распределительных электрических сетей с объектами микрогенерации на базе фотоэлектрических преобразователей, эффективность которого подтверждена имитационным моделированием.
Литература
2. АРВЭ. Рынок возобновляемой энергетики России (июль 2024) [Электрон. ресурс], URL: https://rreda.ru/upload/iblock/c86/ck53fh9u065blilscovlumxq02gqvkcx/202408_RREDA (дата обращения 03.11.2024).
3. Указ Президента РФ от 26.10.2023 г. № 812 «Об утверждении Климатической доктрины Российской Федерации».
4. Куликов А.Л. и др. Выборочный контроль показателей качества электроэнергии в распределительных сетях с большой долей генерации на основе возобновляемых источников энергии. – Электричество, 2022, № 7, с. 11–23.
5. Федеральная служба государственной статистики. Электробаланс и потребление электроэнергии по субъектам РФ [Электрон. ресурс], URL: https://rosstat.gov.ru/storage/mediabank/elbalans-2023.xlsx (дата обращения 17.10.2024).
6. Соснина Е.Н., Шалухо А.В. Вопросы эффективного использования возобновляемых источников энергии в локальной системе электроснабжения потребителей. – Вестник Самарского государственного технического университета. Серия: Технические науки, 2012, № 3 (35), с. 214–218.
7. Hashemi S., Østergaard J. Methods and Strategies for Overvoltage Prevention in Low Voltage Distribution Systems with PV. – IET Renewable Power Generation, 2017, 11(2), pp. 205–214, DOI: 10.1049/iet-rpg.2016.0277.
8. Чурин С.В., Рудых А.В. Исследование несимметрии напряжения в коммунально-бытовом секторе. – Актуальные вопросы аграрной науки, 2022, № 42, с. 13–21.
9. Бекиров Э.А. Электроснабжение промышленных предприятий, зданий, сооружений с использованием энергоагрегатов возобновляемой энергетики. Симферополь: Ариал, 2019, 372 с.
10. Бык Ф.Л., Илюшин П.В., Мышкина Л.С. Особенности и перспективы развития распределенной энергетики в России. – Известия высших учебных заведений. Электромеханика, 2021, т. 64, № 6, с. 78–87.
11. Вагин Г.Я. и др. Методы и средства повышения качества электроэнергии в распределительных электрических сетях низкого и среднего напряжения. – Известия Тульского государственного университета. Технические науки, 2020, № 11, с. 399–407.
12. Илюшин П.В. Разработка схем выдачи мощности объектов распределенной генерации с учетом особенностей современных генерирующих установок. – Электроэнергия. Передача и распределение, 2019, № 2 (53), с. 28–35.
13. Илюшин П.В., Березовский П.К., Филиппов С.П. Формирование технических требований к генерирующим установкам распределённой генерации для участия в регулировании напряжения. – Методические вопросы исследования надежности больших систем энергетики, 2019, т. 1, вып. 70, c. 64–73.
14. BS EN 50438:2013. Requirements for Microgenerating Plants to Be Connected in Parallel with Public Low-Voltage Distribution Networks. London: British Standards Institution, 2013.
15. Rostami S.M., Hamzeh M., Nazaripouya H. Distributed Cooperative Reactive Power Control of PV Systems with Dynamic Leader. – IEEE Transactions on Industrial Informatics, 2024, vol. 20, No. 6, pp. 8972–8982, DOI: 10.1109/TII.2024.3372615.
16. Daccò E. et al. Decentralised Voltage Regulation through Optimal Reactive Power Flow in Distribution Networks with Dispersed Generation. – Electricity, 2024, vol. 5, pp. 134–153, DOI: 10.3390/electricity5010008.
17. Rylander M. et al. Default Volt-Var Inverter Settings to Improve Distribution System Performance. – IEEE Power and Energy Society General Meeting (PESGM), 2016, DOI: 10.1109/PESGM.2016.7741947.
18. Wajahat M. et al. A Comparative Study into Enhancing the PV Penetration Limit of a LV CIGRE Residential Network with Distributed Grid-Tied Single-Phase PV Systems. – Energies, 2019, vol. 12, DOI: 10.3390/en12152964.
19. Kashani M.G., Mobarrez M., Bhattacharya S. Smart Inverter Volt-Watt Control Design in High PV-Penetrated Distribution Systems. – IEEE Transactions on Industry Applications, 2019, vol. 55, No. 2, pp. 1147–1156, DOI: 10.1109/TIA.2018.2878844.
20. Liu X. et al. Coordinated Control of Distributed Energy Storage System with Tap Changer Transformers for Voltage Rise Mitigation Under High Photovoltaic Penetration. – IEEE Transactions on Smart Grid, 2012, vol. 3, pp. 897–906, DOI: 10.1109/TSG.2011.2177501.
21. Thomas D. et al. An Integrated Tool for Optimal Energy Scheduling and Power Quality Improvement of a Microgrid Under Multiple Demand Response Schemes. – Applied Energy, 2020, vol. 260, DOI: 10.1016/j.apenergy.2019.114314.
22. Ponnaganti P., Pillai J.R., Bak‐Jensen B. Opportunities and Challenges of Demand Response in Active Distribution Networks. – Wiley Interdisciplinary Reviews: Energy and Environment, 2018, vol. 7, No. 1, DOI: 10.1002/wene.271.
23. Alam M.J.E., Muttaqi K.M., Sutanto D. Distributed Energy Storage for Mitigation of Voltage-Rise Impact Caused by Rooftop Solar PV. – IEEE Power and Energy Society General Meeting, 2012, DOI: 10.1109/PESGM.2012.6345726.
24. Xing L. et al. Distributed Voltage Regulation for Low-Voltage and High-PV-Penetration Networks with Battery Energy Storage Systems Subject to Communication Delay. – IEEE Transactions on Control Systems Technology, 2021, vol. 30, No. 1, pp. 426–433, DOI: 10.1109/TCST.2021.3061651.
25. Ch Y., Goswami S.K., Chatterjee D. Effect of network reconfiguration on power quality of distribution system. – International Journal of Electrical Power & Energy Systems, 2016, vol. 83, pp. 87–95, DOI: 10.1016/j.ijepes.2016.03.043.
26. Shareef H. et al. Power Quality and Reliability Enhancement in Distribution Systems Via Optimum Network Reconfiguration by Using Quantum Firefly Algorithm. – International Journal of Electrical Power & Energy Systems, 2014, vol. 58, pp. 160–169, DOI: 10.1016/j.ijepes.2014.01.013.
27. Ma K., Fang L., Kong W. Review of Distribution Network Phase Unbalance: Scale, Causes, Consequences, Solutions, and Future Research Directions. – CSEE Journal of Power and Energy Systems, 2020, vol. 6, No. 3, pp. 479–488, DOI: 10.17775/CSEEJPES.2019.03280.
28. Pinthurat W. et al. Techniques for Compensation of Unbalanced Conditions in LV Distribution Networks with Integrated Renewable Generation: An Overview. – Electric Power Systems Research, 2023, vol. 214, DOI: 10.1016/j.epsr.2022.108932.
29. Heidari‐Akhijahani A., Safdarian A., Lehtonen M. Unbalance Mitigation by Optimal Placement of Static Transfer Switches in Low Voltage Distribution Feeders. – IET Generation, Transmission & Distribution, 2020, vol. 14, No. 20, pp. 4612–4621, DOI:10.1049/iet-gtd.2019.1467.
30. Kashani M.G., Mobarrez M., Bhattacharya S. Smart Inverter Volt-Watt Control Design in High PV-Penetrated Distribution Systems. – IEEE Transactions on Industry Applications, 2019, vol. 55, No. 2, pp. 1147–1156, DOI: 10.1109/TIA.2018.2878844.
31. IEEE PES Industry Technical Support Leadership Committee. Impact of IEEE 1547 Standard on Smart Inverters and the Applications in Power Systems [Электрон. ресурс], URL: https://www.nrel.gov/grid/ieee-standard-1547/smart-inverters-power-systems.html (дата обращения 17.01.2025).
32. Holmberg D.G., Roth T. Impact of Price-responsive Load and Volt-Var on Power Quality, Losses, and Customer Economics: A Distribution Grid Case Study. – Technical Note (NIST TN), National Institute of Standards and Technology, 2024, DOI: 10.6028/NIST.TN.2289.
33. GSES. Financial Impacts of Voltage Control Inverter Response Modes [Электрон. ресурс], URL: https://www.gses.com.au/financial-impacts-of-voltage-control-inverter-response-modes/ (дата обращения 17.01.2025).
34. Balogun I.A., Sun Y., Gbadega P.A. Optimal PV active power curtailment in a PV-penetrated distribution network using optimal smart inverter Volt-Watt control settings. – Energy Reports, 2024, vol. 12, pp. 5396–5419, DOI: 10.1016/j.egyr.2024.11.014.
35. Пат. RU 218429 U1. Устройство позиционирования фотоэлектрических панелей для условий застроенной среды / Д.К. Кугучева, М.С. Харитонов, 2023.
36. Кугучева Д.К. Оценка эффективности регулирования выходной мощности фотоэлектрических преобразователей для повышения качества электроэнергии. – Вестник Северо-Кавказского федерального университета, 2024, № 1 (100), с. 31–43.
37. Zhang Y., Sun X. Phase Reassignment Strategy and Load Phase-Swapping Device for Three-Phase Unbalance in the Power Distribution Area. – Electric Power Systems Research, 2024, vol. 235, DOI: 10.1016/j.epsr.2024.110564.
#
1. Assotsiatsiya razvitiya vozobnovlyaemoy energetiki (ARVE). Konkursnye otbory investitsionnyh proektov VIE (Renewable Energy Development Association (REDA). Competitive selection of RES investment projects) [Electron. resource], URL: https://rreda.ru/industry/competitive-selection (Access on 03.11.2024).
2. ARVE. Rynok vozobnovlyaemoy energetiki Rossii (iyul’ 2024) (REDA. Russian Renewable Energy Market: Current Status and Development Prospects: Information Bulletin (July 2024)) [Electron. resource], URL: https://rreda.ru/upload/iblock/c86/ck53fh9u065blilscovlumxq02gqvkcx/202408_RREDA (Access on 03.11.2024).
3. Ukaz Prezidenta Rossiyskoy Federatsii (Decree of the President of the Russian Federation) No. 812 dated 26.10.2023.
4. Kulikov A.L. et al. Elektrichestvo – in Russ. (Electricity), 2022, No. 7, pp. 11–23.
5. Federal’naya sluzhba gosudarstvennoy statistiki. Elektrobalans i potreblenie elektroenergii po sub’‘ektam RF (Federal State Statistics Service. Electricity Balance and Electricity Consumption by Subjects of the Russian Federation) [Electron. resource], URL: https://rosstat.gov.ru/storage/mediabank/elbalans-2023.xlsx (Access on 17.10.2024).
6. Sosnina E.N., Shaluho A.V. Vestnik Samarskogo gosudarst-vennogo tehnicheskogo universiteta. Seriya: Tehnicheskie nauki – in Russ. (Bulletin of Samara State Technical University. Series: Technical Sciences), 2012, No. 3 (35), pp. 214–218.
7. Hashemi S., Østergaard J. Methods and Strategies for Overvoltage Prevention in Low Voltage Distribution Systems with PV. – IET Renewable Power Generation, 2017, vol. 11, No. 2, pp. 205–214, DOI: 10.1049/iet-rpg.2016.0277.
8. Churin S.V., Rudyh A.V. Aktual’nye voprosy agrarnoy nauki – in Russ. (Actual Issues of Agrarian Science), 2022, No. 42, pp. 13–21.
9. Bekirov E.A. Elektrosnabzhenie promyshlennyh predpriyatiy, zdaniy, sooruzheniy s ispol’zovaniem energoagregatov vozobnovlyaemoy energetiki (Power Supply of Industrial Enterprises, Buildings and Structures with Renewable Energy Units). Simferopol’: Arial, 2019, 372 p.
10. Byk F.L., Ilyushin P.V., Myshkina L.S. Izvestiya vysshih uchebnyh zavedeniy. Elektromehanika – in Russ. (News of Higher Educational Institutions. Electromechanics), 2021, vol. 64, No. 6, pp. 78–87.
11. Vagin G.Ya. et al. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tehnicheskie nauki – in Russ. (News of Tula State University. Technical Science), 2020, No. 11, pp. 399–407.
12. Ilyushin P.V. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electricity. Transmission and Distribution), 2019, No. 2 (53), pp. 28–35.
13. Ilyushin P.V., Berezovskiy P.K., Filippov S.P. Metodicheskie voprosy issledovaniya nadezhnosti bol’shih sistem energetiki – in Russ. (Methodological Issues of Reliability Studies of Large Power Systems), 2019, vol. 1, iss. 70, pp. 64–73.
14. BS EN 50438:2013. Requirements for Microgenerating Plants to Be Connected in Parallel with Public Low-Voltage Distribution Networks. London: British Standards Institution, 2013.
15. Rostami S.M., Hamzeh M., Nazaripouya H. Distributed Cooperative Reactive Power Control of PV Systems with Dynamic Leader. – IEEE Transactions on Industrial Informatics, 2024, vol. 20, No. 6, pp. 8972–8982, DOI: 10.1109/TII.2024.3372615.
16. Daccò E. et al. Decentralised Voltage Regulation through Optimal Reactive Power Flow in Distribution Networks with Dispersed Generation. – Electricity, 2024, vol. 5, pp. 134–153, DOI: 10.3390/electricity5010008.
17. Rylander M. et al. Default Volt-Var Inverter Settings to Improve Distribution System Performance. – IEEE Power and Energy Society General Meeting (PESGM), 2016, DOI: 10.1109/PESGM.2016.7741947.
18. Wajahat M. et al. A Comparative Study into Enhancing the PV Penetration Limit of a LV CIGRE Residential Network with Distributed Grid-Tied Single-Phase PV Systems. – Energies, 2019, vol. 12, DOI: 10.3390/en12152964.
19. Kashani M.G., Mobarrez M., Bhattacharya S. Smart Inverter Volt-Watt Control Design in High PV-Penetrated Distribution Systems. – IEEE Transactions on Industry Applications, 2019, vol. 55, No. 2, pp. 1147–1156, DOI: 10.1109/TIA.2018.2878844.
20. Liu X. et al. Coordinated Control of Distributed Energy Storage System with Tap Changer Transformers for Voltage Rise Mitigation Under High Photovoltaic Penetration. – IEEE Transactions on Smart Grid, 2012, vol. 3, pp. 897–906, DOI: 10.1109/TSG.2011.2177501.
21. Thomas D. et al. An Integrated Tool for Optimal Energy Scheduling and Power Quality Improvement of a Microgrid Under Multiple Demand Response Schemes. – Applied Energy, 2020, vol. 260, DOI: 10.1016/j.apenergy.2019.114314.
22. Ponnaganti P., Pillai J.R., Bak‐Jensen B. Opportunities and Challenges of Demand Response in Active Distribution Networks. – Wiley Interdisciplinary Reviews: Energy and Environment, 2018, vol. 7, No. 1, DOI: 10.1002/wene.271.
23. Alam M.J.E., Muttaqi K.M., Sutanto D. Distributed Energy Storage for Mitigation of Voltage-Rise Impact Caused by Rooftop Solar PV. – IEEE Power and Energy Society General Meeting, 2012, DOI: 10.1109/PESGM.2012.6345726.
24. Xing L. et al. Distributed Voltage Regulation for Low-Voltage and High-PV-Penetration Networks with Battery Energy Storage Systems Subject to Communication Delay. – IEEE Transactions on Control Systems Technology, 2021, vol. 30, No. 1, pp. 426–433, DOI: 10.1109/TCST.2021.3061651.
25. Ch Y., Goswami S.K., Chatterjee D. Effect of network reconfiguration on power quality of distribution system. – International Journal of Electrical Power & Energy Systems, 2016, vol. 83, pp. 87–95, DOI: 10.1016/j.ijepes.2016.03.043.
26. Shareef H. et al. Power Quality and Reliability Enhancement in Distribution Systems Via Optimum Network Reconfiguration by Using Quantum Firefly Algorithm. – International Journal of Electrical Power & Energy Systems, 2014, vol. 58, pp. 160–169, DOI: 10.1016/j.ijepes.2014.01.013.
27. Ma K., Fang L., Kong W. Review of Distribution Network Phase Unbalance: Scale, Causes, Consequences, Solutions, and Future Research Directions. – CSEE Journal of Power and Energy Systems, 2020, vol. 6, No. 3, pp. 479–488, DOI: 10.17775/CSEEJPES.2019.03280.
28. Pinthurat W. et al. Techniques for Compensation of Unbalanced Conditions in LV Distribution Networks with Integrated Renewable Generation: An Overview. – Electric Power Systems Research, 2023, vol. 214, DOI: 10.1016/j.epsr.2022.108932.
29. Heidari‐Akhijahani A., Safdarian A., Lehtonen M. Unbalance Mitigation by Optimal Placement of Static Transfer Switches in Low Voltage Distribution Feeders. – IET Generation, Transmission & Distribution, 2020, vol. 14, No. 20, pp. 4612–4621, DOI:10.1049/iet-gtd.2019.1467.
30. Kashani M.G., Mobarrez M., Bhattacharya S. Smart Inverter Volt-Watt Control Design in High PV-Penetrated Distribution Systems. – IEEE Transactions on Industry Applications, 2019, vol. 55, No. 2, pp. 1147–1156, DOI: 10.1109/TIA.2018.2878844.
31. IEEE PES Industry Technical Support Leadership Committee. Impact of IEEE 1547 Standard on Smart Inverters and the Applications in Power Systems [Electron. resource], URL: https://www.nrel.gov/grid/ieee-standard-1547/smart-inverters-power-systems.html (Access on 17.01.2025).
32. Holmberg D.G., Roth T. Impact of Price-responsive Load and Volt-Var on Power Quality, Losses, and Customer Economics: A Distribution Grid Case Study. – Technical Note (NIST TN), National Institute of Standards and Technology, 2024, DOI: 10.6028/NIST.TN.2289.
33. GSES. Financial Impacts of Voltage Control Inverter Response Modes [Electron. resource], URL: https://www.gses.com.au/financial-impacts-of-voltage-control-inverter-response-modes/ (Access on 17.01.2025).
34. Balogun I.A., Sun Y., Gbadega P.A. Optimal PV active power curtailment in a PV-penetrated distribution network using optimal smart inverter Volt-Watt control settings. – Energy Reports, 2024, vol. 12, pp. 5396–5419, DOI: 10.1016/j.egyr.2024.11.014.
35. Pat. RU 218429 U1. Ustroystvo pozitsionirovaniya fotoelektri-cheskih paneley dlya usloviy zastroennoy sredy (Photovoltaic Panel Positioning Device for Built-up Environments) / D.K. Kugucheva, M.S. Haritonov, 2023.
36. Kugucheva D.K. Vestnik Severo-Kavkazskogo federal’nogo universiteta – in Russ. (Bulletin of the North Caucasus Federal University), 2024, No. 1 (100), pp. 31–43.
37. Zhang Y., Sun X. Phase Reassignment Strategy and Load Phase-Swapping Device for Three-Phase Unbalance in the Power Distribution Area. – Electric Power Systems Research, 2024, vol. 235, DOI: 10.1016/j.epsr.2024.110564