Analyzing the Types and Series of Induction Machines on the Basis of an Alternative Machine Constant

  • Alexey V. MATVEEV
Keywords: induction machines with a squirrel-cage rotor, with a solid rotor, doubly-fed induction machines, energy efficiency, efficiency classes, cooling types, assessment of mass and overall dimensions, machine constant, scaling

Abstract

The types and series of induction machines are analyzed on the basis of an alternative machine constant. The dependence of the machine constant on the machine type, design, and characteristics is shown. It is conjectured that the measures taken to improve the energy efficiency of the series of induction machines are insufficient in the range of small power values. A method for comparing the machines is
proposed; formulas for scaling them are given, and the matter regarding the evolution of induction machines is touched. It is important to remember that the alternative machine constant is not a precise tool for predicting the mass of a particular machine from a particular catalogue. It only shows the extent of compactness to which the machine can be made with the specified characteristics and selected design version. The availability of reliable reference points that can be easily determined using the machine constant will help determine the really best solutions and screen out non-optimal ones. This, both time and material resources will be saved. In designing new machines, in is proposed to set forth ambitious objectives and to select, as reference points, the machine constant values by 20% lower than those corresponding to the state of the art.

Author Biography

Alexey V. MATVEEV

MATVEEV Alexey V. (Graduated the Moscow Power Engineering Institute in 1998. He obtained his PhG from Eindhoven University of Technology (the Nitherlands) in 2006. Currently he is developing his own project DriveConstructor

References

1. Матвеев А.В. Альтернативная машинная постоянная и оценка массы и габаритов электрических машин. — Электричество, 2019, № 11, с. 45-53.
2. Иванов-Смоленский А.В. Электрические машины. М.: Энергия, 1980, 927, с.
3. Каталог «Low voltage process performance motors according to EU MEPS», 9AKK105944 EN, October 2013, ABB Motors and Generators [Электрон. ресурс] www.abb.com (дата обращения 15.12.2019).
4. Каталог «HV induction motors, technical catalog for IEC motors», EN, 09-2011, ABB Motors and Generators [Электрон. ресурс] www.abb.com (дата обращения 15.12.2019).
5. Каталог «SIMOTICS low-voltage motors type, series 1LE1, 1MB1 and 1PC1», D 81.1, 2013, Siemens [Электрон. ресурс] www.siemens.com (дата обращения 15.12.2019).
6. Каталог «Three-phase induction motors: H compact, H compact PLUS», D 84.1, Siemens, 2009, [Электрон. ресурс] www.siemens.com (дата обращения 15.12.2019].
7. Каталог «Low voltage water cooled motors», EN, 02-2011, ABB Motors and Generator [Электрон. ресурс] www.abb.com (дата обращения 15.12.2019)
8. Каталог «Water jacket three phase squirrel cage induction motors», ASI.CT.036.1 GB, Marelli [Электрон. ресурс] www.marellimotori.com (дата обращения 15.12.2019).
9. Lewis C. The Advanced Induction Motor. - IEEE Power Engineering Society Summer Meeting, Chicago, USA, 21-25 July 2002.
10. Брошюра «Power Conversion Solutions, High speed induction motors up to 100 MW» [Электрон. русурс] www.gepowerconversion.com (дата обращения 15.12.2019].
11. Kawashima K., Shimada A. Spindle motors for machine tools. - Technical report, Motor Technologies for Industry and Daily Life Edition, Mitsubishi Electric Advance, pp. 17-18, vol. 103, September 2003.
12. Mekuria Y.G. Development of a high speed solid rotor asynchronous drive fed by a frequency converter system, Shaker Verlag GmbH, Germany, 2013.
13. Gieras J.F, Saari J. Performance calculation for a high speed solid- rotor induction motor. - IEEE Transactions on Industrial Electronics, 59(6):2689-2700, June 2012.
14. Gulbahce M.O., Kocabas D.A. High-speed solid rotor induction motor design with improved efficiency and decreased harmonic effect. — IET Electr. Power Appl., 2018, vol. 12, iss. 8, pp. 1126-1133.
15. Huppunen J. High-speed solid-rotor induction machine - electromagnetic calculation and design. - DSc thesis at Lappeenranta University of Technology, Finland, 2004.
16. Mikami H., Ide K., Shimizu Y., Senoo M., Seki H. Historical evolution of motor technology. — Hitachi Review, vol. 60 (2011), No. 1.
17. Alger P.L., Arnold R.E. The history of induction motors in America. — Proc. IEE, vol. 64, No. 9, September 1976.
#
1. Matveyev A.V. Elektrichestvo – in Russ. (Electricity), 2019, No. 11, pp. 45–53.
2. Ivanov-Smilehsky A.V. Elektricheskiye mashiny (Electrical machines). M.: Energiya, 1980, 927, p.
3. Catalogue «Low voltage process performance motors according to EU MEPS», 9AKK105944 EN, October 2013, ABB Motors and Generators [Electron. Resourse] www.abb.com (Data of appeal 15.12.2019).
4. Catalogue «HV induction motors, technical catalog for IEC motors», EN, 09-2011, ABB Motors and Generators [Electron. Resourse] www.abb.com (Data of appeal 15.12.2019).
5. Catalogue «SIMOTICS low-voltage motors type, series 1LE1, 1MB1 and 1PC1», D 81.1, 2013, Siemens [Electron. Resourse] www.siemens.com (Data of appeal) 15.12.2019).
6. Catalogue «Three-phase induction motors: H compact, H compact PLUS», D 84.1, Siemens, 2009 [Electron. Resourse] www.siemens.com (Data of appeal 15.12.2019].
7. Catalogue «Low voltage water cooled motors», EN, 02-2011, ABB Motors and Generator [Electron. Resourse] www.abb.com (Data of appeal 15.12.2019)
8. Catalogue «Water jacket three phase squirrel cage induction motors», ASI.CT.036.1 GB, Marelli [Electron Resourse] www.marellimotori.com. (Data of appeal 15.12.2019).
9. Lewis C. The Advanced Induction Motor. – IEEE Power Engineering Society Summer Meeting, Chicago, USA, 21–25 July 2002.
10. Brochure «Power Conversion Solutions, High speed induction motors up to 100 MW» [Electron. Resourse] www.gepowerconversion.com (Data of appeal 15.12.2019].
11. Kawashima K., Shimada A. Spindle motors for machine tools - Technical report, Motor Technologies for Industry and Daily Life Edition, Mitsubishi Electric Advance, pp 17-18, vol. 103, September 2003.
12. Mekuria Y.G. Development of a high speed solid rotor asynchronous drive fed by a frequency converter system, Shaker Verlag GmbH, Germany, 2013.
13. Gieras J.F, Saari J. Performance calculation for a high speed solid- rotor induction motor. - IEEE Transactions on Industrial Electronics, 59(6): 2689-2700, June 2012.
14. Gulbahce M.O., Kocabas D.A. High-speed solid rotor induction motor design with improved efficiency and decreased harmonic effect. — IET Electr. Power Appl., 2018, vol. 12 iss. 8, pp. 1126-1133.
15. Huppunen J. High-speed solid-rotor induction machine - electromagnetic calculation and design. - DSc thesis at Lappeenranta University of Technology, Finland, 2004.
16. Mikami H., Ide K., Shimizu Y., Senoo M., Seki H. Historical evolution of motor technology. — Hitachi Review, vol. 60 (2011), No. 1.
17. Alger P.L., Arnold R.E. The history of induction motors in America. — Proc. IEE, vol. 64, No. 9, September 1976.
Published
2020-07-01
Section
Article