Измерение пробивного напряжения вязких жидкостей

  • Дмитрий Владимирович Кизеветтер
  • Денис Андреевич Трубин
  • Алан Едильулы Кулкаев
Ключевые слова: пробивное напряжение, вязкая жидкость, жидкий диэлектрик, измерения, стандарты

Аннотация

Рассмотрены национальные стандарты измерения пробивного напряжения жидких диэлектриков, в частности регламентирующие методику измерений и основные параметры измерительной ячейки. Измерено пробивное напряжение жидкостей ПМС-1000, ПМС-12500 и ПМС-30000 различных производителей. Выявлены основные проблемы проведения измерений. На примере полиметилсилоксановых жидких диэлектриков показано, что в вязких жидкостях после пробоя образуется канал, состоящий из пузырьков газа, удерживаемых силой поверхностного натяжения, позволяющей во многих случаях каналу сохраняться длительное время. Выполнены теоретические расчеты, подтвержденные экспериментом, позволяющие оценить скорость движения пузырьков воздуха в полиметилсилоксановых жидкостях. Сделан вывод о необходимости увеличения интервалов времени между отдельными измерениями, а также интервала времени перед началом измерений после заливки испытуемой жидкости в измерительную ячейку. Показано, что необходимы визуальный контроль межэлектродной области и специальная методика перемешивания жидкости. На основе выполненной работы можно заявить, что существующие стандарты измерения пробивного напряжения применительно к вязким жидкостям требуют доработки.

Биографии авторов

Дмитрий Владимирович Кизеветтер

доктор физ.-мат. наук, профессор Высшей школы высоковольтной энергетики Санкт-Петербургского политехнического университета Петра Великого

Денис Андреевич Трубин

аспирант Высшей школы высоковольтной энергетики Санкт-Петербургского политехнического университета Петра Великого

Алан Едильулы Кулкаев

студент Высшей школы высоковольтной энергетики Санкт-Петербургского политехнического университета Петра Великого

Литература

1. ГОСТ 6433.3–71. Материалы электроизоляционные твердые. Методы определения электрической прочности при переменном (частоты 50 Гц) и постоянном напряжении. М.: Издательство стандартов, 1972, 52 с.
2. ГОСТ Р МЭК 60156–2013. Жидкости изоляционные. Определение напряжения пробоя на промышленной частоте. М.: Стандартинформ, 2019, 7 с.
3. ГОСТ 6997–77. Составы для заливки кабельных муфт. Технические условия. М.: Издательство стандартов, 1978, 7 с.
4. ГОСТ 10916–74. Жидкость кремнийорганическая электроизоляционная 132-12Д. Технические условия. М.: Издательство стандартов, 1974, 11 с.
5. ГОСТ 6581–75. Материалы электроизоляционные жидкие. Методы электрических испытаний. М.: Стандартинформ, 2008, 16 с.
6. ГОСТ 26130–84. Бумага электроизоляционная. Методы определения электрической прочности при переменном (частоты 50 Гц) и постоянном напряжении. М.: Издательство стандартов, 1984, 6 с.
7. ГОСТ 16745–83. Бумага конденсаторная. Метод определения пробивного напряжения при переменном (частоты 50 Гц) и постоянном напряжении. М.: Стандартинформ, 2006, 6 с.
8. ГОСТ 28885–90. Конденсаторы. Методы измерений и испытаний. М.: Издательство стандартов, 1999, 29 с.
9. ГОСТ 18407–73. Древесина. Метод определения электрической прочности при переменном напряжении. М.: Издательство стандартов, 2000, 3 с.
10. ASTM D877 / D877M–19. Standard Test Method for Dielectric Breakdown Voltage of Insulating Liquids Using Disk Electrodes, ASTM International, West Conshohocken, PA, 2019.
11. ASTM D1816–12(2019). Standard Test Method for Dielectric Breakdown Voltage of Insulating Liquids Using VDE Electrodes, ASTM International, West Conshohocken, PA, 2019.
12. ASTM D1816–04. Standard Test Method for Dielectric Breakdown Voltage of Insulating Oils of Petroleum Origin Using VDE Electrodes, ASTM International, West Conshohocken, PA, 2004.
13. ASTM D6871–17. Standard Specification for Natural (Vegetable Oil) Ester Fluids Used in Electrical Apparatus, ASTM International, West Conshohocken, PA, 2017.
14. ASTM D3300–20. Standard Test Method for Dielectric Breakdown Voltage of Insulating Liquids Under Impulse Conditions, ASTM International, West Conshohocken, PA, 2020.
15. ASTM D2225–92. Standard Test Methods for Silicone Fluids Used for Electrical Insulation, ASTM International, West Conshohocken, PA, 1997.
16. IEC 60156. Insulating liquids – Determination of the breakdown voltage at power frequency – Test method, 2018, International Electrotechnical Commission (IEC), 2018, 37 p.
17. Силиконовая трансформаторная жидкость СОФЭКСИЛ-ТСЖ. Рекомендации по применению. Техническое описание и характеристики [Электрон. ресурс], URL: https://www.so-fex-silicone.ru/upload/file/pdf/sofexil_tcj.pdf (дата обращения 27.05.2021).
18. Dow Corning 561 Silicone Transformer Liquid. Technical manual [Электрон. ресурс], URL: https://docplayer.net/21470104-Dow-corning-561-silicone-transformer-liquid.html (дата обращения 27.05.2021).
19. XIAMETER PMX-561 Transformer Liquid. Polydimethyl-siloxane. Technical Data Sheet [Электрон. ресурс], URL: https://www.dow.com/content/dam/dcc/documents/en-us/product-datasheet/95/95-4/95-459-01-xiameter-pmx-561-transformer-liquid.pdf?iframe=true (дата обращения 27.05.2021).
20. Chadband W.G., Calderwood J.H. The Propagation of Discharges in Dielectric Liquids. – Journal of Electrostatics, 1979, vol. 7, No. 9, pp. 75–79.
21. Watson P.K., Chadband W.G. The electrical breakdown of viscous silicone fluids. – 9th International Conference on Conduction and Breakdown in Dielectric Liquids, 1987, pp. 381–386.
22. Watson P.K., Iqbal Qureshi M., Chadband W.G. The growth of prebreakdown cavities in silicone fluids and the frequency of the accompanying discharge pulses. – IEEE Transactions on Dielectrics and Electrical Insulation, 1998, vol. 5, No.3, pp. 344–350.
23. Crine J. Silicone oil as replacement fluid for PCBs in transformers. – Canadian Electrical Engineering Journal, 1986, vol. 11, No. 3, pp. 110–113.
#
1. GОSТ 6433.3–71. Materialy elektroizolyacionnye tverdye. Metody opredeleniya elektricheskoy prochnosti pri peremennom (chastoty 50 Gts) i postoyannom napryazhenii (Solid Electrical Insulating Materials. Methods for Evaluation of Electrical Strength at Alternating Voltage (at 50 Hz Frequency) and Direct Voltage). М.: Izdatel`stvo standartov, 1972, 52 p.
2. GOST R MEK 60156–2013. Zhidkosti izolyatsionnye. Opredelenie napryazheniya proboya na promyshlennoy chastote (Insulating Liquids. Determination of the Breakdown Voltage at Power Frequency). М.: Standartinform, 2019, 7 p.
3. GOST 6997–77. Sostavy dlya zalivki kabel'nyh muft. Tekhnicheskie usloviya (Compositions for Filling Cable Joints. Specifications). М.: Izdatel`stvo standartov, 1978, 7 p.
4. GOST 10916–74. Zhidkost' kremniyorganicheskaya elektroizolyatsionnaya 132-12D. Tekhnicheskie usloviya (Silicone Insulating Liquid 132-12D. Specifications). М.: Izdatel`stvo standartov, 1974, 11 p.
5. GOST 6581–75. Materialy elektroizolyatsionnye zhidkie. Metody elektricheskih ispytaniy (Liquid Electrical Insulating Materials. Electric Test Methods). М.: Standartinform, 2008, 16 p.
6. GOST 26130–84. Bumaga elektroizolyatsionnaya. Metody opredeleniya elektricheskoy prochnosti pri peremennom (chastoty 50 Gts) i postoyannom napryazhenii (Electrical Insulating Paper. Methods for Determination of Electrical Strength at Alternating (Frequency of 50 Hz) and Constant Voltage). М.: Izdatel`stvo standartov, 1984, 6 p.
7. GOST 16745–83. Bumaga kondensatornaya. Metod opredeleniya probivnogo napryazheniya pri peremennom (chastoty 50 Gts) i postoyannom napryazhenii (Capacity Paper. Method for Determining Breakdown Voltage at Alternating (frequency 50 Hz.) and Direct Voltage). М.: Standartinform, 2006, 6 p.
8. GOST 28885–90. Kondensatory. Metody izmereniy i ispytaniy (Capacitors. Methods of Measurements and Tests). М.: Izdatel`stvo standartov, 1999, 29 p.
9. GOST 18407–73. (Wood. Method for Evaluation of Electrical Strength at Alternating Voltage). М.: Izdatel`stvo standartov, 2000, 3 p.
10. ASTM D877 / D877M–19. Standard Test Method for Dielectric Breakdown Voltage of Insulating Liquids Using Disk Electrodes, ASTM International, West Conshohocken, PA, 2019.
11. ASTM D1816–12 (2019). Standard Test Method for Dielectric Breakdown Voltage of Insulating Liquids Using VDE Electrodes, ASTM International, West Conshohocken, PA, 2019.
12. ASTM D1816–04. Standard Test Method for Dielectric Breakdown Voltage of Insulating Oils of Petroleum Origin Using VDE Electrodes, ASTM International, West Conshohocken, PA, 2004.
13. ASTM D6871–17. Standard Specification for Natural (Vegetable Oil) Ester Fluids Used in Electrical Apparatus, ASTM International, West Conshohocken, PA, 2017.
14. ASTM D3300–20. Standard Test Method for Dielectric Breakdown Voltage of Insulating Liquids Under Impulse Conditions, ASTM International, West Conshohocken, PA, 2020.
15. ASTM D2225–92. Standard Test Methods for Silicone Fluids Used for Electrical Insulation, ASTM International, West Conshohocken, PA, 1997.
16. IEC 60156. Insulating liquids – Determination of the breakdown voltage at power frequency – Test method, 2018, International Electrotechnical Commission (IEC), 2018, 37 p.
17. Silikonovaya transformatornaya zhidkost' SOFEKSIL-TSZH. Rekomendatsii po primeneniyu. Tekhnicheskoe opisanie i harakteristiki (Silicone Transformer Fluid SOFEKSIL-TSZH. Recommendations for Use. Technical Description and Characteristics) [Electron. Resource], URL: https://www.sofex-silicone.ru/upload/file/pdf/sofexil_tcj.pdf (Date of appeal 27.05.2021).
18. Dow Corning 561 Silicone Transformer Liquid. Technical manual [Electron. Resource], URL: https://docplayer.net/21470104-Dow-corning-561-silicone-transformer-liquid.html (Date of appeal 27.05.2021).
19. XIAMETER PMX-561 Transformer Liquid. Polydimethyl-siloxane. Technical Data Sheet [Electron. Resource], URL: https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/95/95-4/95-459-01-xiameter-pmx-561-transformer-liquid.pdf?iframe=true (Date of appeal 27.05.2021).
20. Chadband W.G., Calderwood J.H. The Propagation of Discharges in Dielectric Liquids. – Journal of Electrostatics, 1979, vol. 7, No. 9, pp. 75–79.
21. Watson P.K., Chadband W.G. The electrical breakdown of viscous silicone fluids. – 9th International Conference on Conduction and Breakdown in Dielectric Liquids, 1987, pp. 381–386.
22. Watson P.K., Iqbal Qureshi M., Chadband W.G. The growth of prebreakdown cavities in silicone fluids and the frequency of the accompanying discharge pulses. – IEEE Transactions on Dielectrics and Electrical Insulation, 1998, vol. 5, No.3, pp. 344–350.
23. Crine J. Silicone oil as replacement fluid for PCBs in transformers. – Canadian Electrical Engineering Journal, 1986, vol. 11, No. 3, pp. 110–113
Опубликован
2021-07-23
Раздел
Статьи