Многоцелевая оптимизация распределения потоков мощности в ЭЭС с ВИЭ при минимальном числе переключений устройства РПН
Аннотация
Интеграция возобновляемых источников энергии (ВИЭ), таких как энергия ветра и солнца, в традиционные энергосистемы дает многочисленные технические и экологические преимущества. Однако неоптимальная эксплуатация электрических сетей с ВИЭ может привести к высоким эксплуатационным расходам и повышенным системным потерям, колебаниям напряжения. Для решения этих проблем в работе предложен подход к оптимизации распределения мощности в энергосистеме за заданный интервал времени (в работе – 24 часа, общепринятый английский термин: Dynamic Optimal Power Flow, поэтому далее используется аббревиатура DOPF). В качестве не рассматриваемого ранее ограничения взято максимально допустимое ежедневное количество переключений устройства регулирования под нагрузкой (РПН) трансформаторов в течение 24 часов. Целевыми функциями являлись: минимизация общих эксплуатационных затрат (в том числе стоимость топлива и потерь мощности), минимизация потерь мощности, минимизация ежедневного количества переключений РПН. Минимизация ежедневного количества операций для трансформаторов принята в качестве цели для увеличения срока службы трансформаторов, сокращения технического обслуживания и амортизации. Минимизация целей выполнялась по дискретным и непрерывным переменным управления, в качестве которых рассматривались: мощность и напряжение генераторов, номера отпаек устройств РПН и величины шунтирующих конденсаторов. Также для решения задачи DOPF с дискретными и непрерывными переменными в работе предложен и успешно использован улучшенный алгоритм оптимизации роя частиц (PSO).
Литература
2. Liang R. et al. Multi‐Objective Dynamic Optimal Power Flow Using Improved Artificial Bee Colony Algorithm Based on Pareto Optimization. – International Transactions on Electrical Energy Systems, 2016, vol. 26, No 4, pp. 692–712, DOI: 10.1002/ETEP.2101.
3. Niknam T., et al. Modified Honey Bee Mating Optimisation to Solve Dynamic Optimal Power Flow Considering Generator Constraints. – IET Generation, Transmission and Distribution, 2011, vol. 5, No. 10, pp. 989–1002, DOI:10.1049/iet-gtd.2011.0055.
4. Chung C.Y., Yan W., Liu F. Decomposed Predictor-Corrector Interior Point Method for Dynamic Optimal Power Flow. – IEEE Transactions on Power Systems, 2010, vol. 26, No. 3, pp. 1030–1039, DOI: 10.1109/TPWRS.2010.2080326.
5. Costa A.L., Costa A.S. Energy and Ancillary Service Dispatch Thro-ugh Dynamic Optimal Power Flow. – Electric power systems research, 2007, vol. 77, No. 8, pp. 1047–1055, DOI:10.1109/PTC.2003.1304717.
6. Yamin H.Y., Al-Tallaq K., Shahidehpour S.M. New Approach for Dynamic Optimal Power Flow Using Benders Decomposition in a Deregulated Power Market. – Electric Power Systems Research, 2003, vol. 65, No. 2, pp. 101–107, DOI: 10.1016/S0378-7796(02)00224-9.
7. Nejdawi I.M., Kimball L.M. Dynamic Optimal Power Flow with Minimal Inter-Temporal Control Variable Changes. – Electric Power Components and Systems, 2005, vol. 33, No. 10, pp. 1071–1080, DOI:10.1080/15325000590933474.
8. Xie K., Song Y.H. Dynamic Optimal Power Flow by Inte-rior Point Methods. – IEE Proceedings-Generation, Transmission and Distribution, 2001, vol. 148, No. 1, pp. 76–84, DOI:10.1049/ip-gtd:20010026.
9. Pu G.-C., Chen N. Sensitivity Factor Based Short Term Dynamic Optimal Power Flow. – Journal of the Chinese Institute of Engineers, 1997, vol. 20, No. 5, pp. 585–592, DOI:10.1080/02533839.1997.9741865.
10. Niknam T., Narimani M.R., Jabbari M. Dynamic Optimal Power Flow Using Hybrid Particle Swarm Optimization and Simulated Annealing. – International Transactions on Electrical Energy Systems, 2013, vol. 23, No. 7, pp. 975–1001, DOI: 10.1002/ETEP.1633.
11. Liu B.. et al. Generalized Benders Decomposition Based Dynamic Optimal Power Flow Considering Discrete and Continuous Decision Variables. – IEEE Access, 2020, vol. 8, pp. 194260–194268, DOI:10.1109/ACCESS.2020.3033224.
12. Awad A.S.A., Turcotte D., El-Fouly T.H.M. Impact Assess-ment and Mitigation Techniques for High Penetration Levels of Renewable Energy Sources in Distribution Networks: Voltage-Control Perspective. – Journal of Modern Power Systems and Clean Energy, 2022, vol. 10, iss. 2, pp. 450–458, DOI:10.35833/MPCE.2020.000177.
13. Korovkin N.V, Potienko A.A. The Use of a Genetic Algorithm for Solving Electric Engineering Problems. – Electrical Technology Russia, 2002(4).
14. Toma S. et al. Optimal Control of Voltage in Distribution Systems by Voltage Reference Management. – 2008 IEEE 2nd International Power and Energy Conference, 2008, pp. 1239–1244, DOI: 10.1002/TEE.20452.
15. Agalgaonkar Y.P., Pal B.C., Jabr R.A. Distribution Voltage Control Considering the Impact of PV Generation on Tap Changers and Autonomous Regulators. – IEEE Transactions on Power Systems, 2014, vol. 29, No. 1, pp. 182–192, DOI:10.1109/TPWRS.2013.2279721.
16. Korovkin N.V, Odintsov M.V, Frolov O.V. Operational Planning in Power Systems Based on Multi-Objective Optimization. – Power Technology and Engineering, 2016, vol. 50, No. 1, pp. 75–78, DOI:10.1007/s10749-016-0662-2.
17. Belyaev N.А., et al. Methods for Optimization of Power System Operation Modes. – Russian Electrical Engineering, 2013, No. 2, DOI: 10.3103/S1068371213020028.
18. Hu Z., et al. Volt/VAr Control in Distribution Systems Using a Time-Interval Based Approach. – IEEЕ Proceedings-Generation, Transmission and Distribution, 2003, vol. 150, No. 5, pp. 548–554, DOI:10.1049/ip-gtd:20030562.
19 Niknam T., Azizipanah-Abarghooee R., Narimani M.R. Re-serve Constrained Dynamic Optimal Power Flow Subject to Valve-Point Effects, Prohibited Zones and Multi-Fuel Constraints. – Energy, 2012, vol. 47, No. 1, pp. 451–464, DOI: 10.1016/J.ENERGY.2012.07.053.
20. Alrashidi M.R., El-Hawary M.E. A Survey of Particle Swarm Optimization Applications in Electric Power Systems. – IEEE Transactions on Evolutionary Computation, 2009, vol. 13, No. 4, pp. 913–918, DOI:10.1109/TEVC.2006.880326.
21. Ma Z., et al. Improved Chaotic Particle Swarm Optimization Algorithm with More Symmetric Distribution for Numerical Function Optimization. – Symmetry. Multidisciplinary Digital Publishing Institute, 2019, vol. 11, No. 7, DOI: 10.3390/SYM11070876.
22. Chen K., et al. An Ameliorated Particle Swarm Optimizer for Solving Numerical Optimization Problems. – Applied Soft Computing Journal, 2018, vol. 73, pp. 482–496, DOI:10.1016/j.asoc.2018.09.007.
23. Ullah Z., et al. A Solution to the Optimal Power Flow Problem Considering WT and PV Generation. – IEEE Access. 2019, vol. 7, pp. 46763–46772, DOI:10.1109/ACCESS.2019.2909561.
24. Das T., et al. Optimal Reactive Power Dispatch Incorporating Solar Power Using Jaya Algorithm. – Computational advancement in communication circuits and systems, 2020, pp. 37–48, DOI: 10.1007/978-981-13-8687-9_4.
25. Refaat A., Elgamal M., Korovkin N.V. A Novel Grid-Connected Photovoltaic Centralized Inverter Topology to Improve the Power Harvest during Partial Shading Condition. – Электричество, 2019, №. 7, с. 59–68.
26. Refaat A., Osman M.H., Korovkin N.V. Optimum Power Extraction from Non-Uniform Aged PV Array Using Current Collector Optimizer Topology. – Электричество, 2019, №. 10, с. 54–60.
27. Zhou W., Yang H., Fang Z. A Novel Model for Photovoltaic Array Performance Prediction. – Applied Energy, 2007, vol. 84, No. 12, pp. 1187–1198, DOI:10.1016/j.apenergy.2007.04.006.
28. Ahmed M.K., Osman M.H., Korovkin N.V. Optimal Location and Size of Multiple Renewable Distributed Generation Units in Power Systems Using an improved Version of Particle Swarm Optimization. – Электричество, 2021, №. 12, с. 15–27.
29. Pfenninger S., Staffell I. Long-Term Patterns of European PV Output Using 30 Years of Validated Hourly Reanalysis and Satellite Data. – Energy, 2016, vol. 114, pp. 1251–1265, DOI:10.1016/j.energy.2016.08.060.
---
Исследователь [Мамдух К. Ахмед] финансируется за счет стипендии [PhD] в рамках стратегического сотрудничества между Арабской Республикой Египет и Российской Федерацией
#
1. Dommel H.W., Tinney W.F. Optimal Power Flow Solutions. – IEEE Transactions on Power Apparatus and Systems, 1968, No. 10, pp. 1866–1876, DOI: 10.1109/TPAS.1968.292150.
2. Liang R. et al. Multi‐Objective Dynamic Optimal Power Flow Using Improved Artificial Bee Colony Algorithm Based on Pareto Optimization. – International Transactions on Electrical Energy Systems, 2016, vol. 26, No 4, pp. 692–712, DOI: 10.1002/ETEP.2101.
3. Niknam T., et al. Modified Honey Bee Mating Optimisation to Solve Dynamic Optimal Power Flow Considering Generator Constraints. – IET Generation, Transmission and Distribution, 2011, vol. 5, No. 10, pp. 989–1002, DOI:10.1049/iet-gtd.2011.0055.
4. Chung C.Y., Yan W., Liu F. Decomposed Predictor-Corrector Interior Point Method for Dynamic Optimal Power Flow. – IEEE Transactions on Power Systems, 2010, vol. 26, No. 3, pp. 1030–1039, DOI: 10.1109/TPWRS.2010.2080326.
5. Costa A.L., Costa A.S. Energy and Ancillary Service Dispatch Through Dynamic Optimal Power Flow. – Electric power systems research, 2007, vol. 77, No. 8, pp. 1047–1055, DOI:10.1109/PTC.2003. 1304717.
6. Yamin H.Y., Al-Tallaq K., Shahidehpour S.M. New Approach for Dynamic Optimal Power Flow Using Benders Decomposition in a Deregulated Power Market. – Electric Power Systems Research, 2003, vol. 65, No. 2, pp. 101–107, DOI: 10.1016/S0378-7796(02)00224-9.
7. Nejdawi I.M., Kimball L.M. Dynamic Optimal Power Flow with Minimal Inter-Temporal Control Variable Changes. – Electric Power Components and Systems, 2005, vol. 33, No. 10, pp. 1071–1080, DOI:10.1080/15325000590933474.
8. Xie K., Song Y.H. Dynamic Optimal Power Flow by Interior Point Methods. – IEE Proceedings-Generation, Transmission and Distribution, 2001, vol. 148, No. 1, pp. 76–84, DOI:10.1049/ip-gtd:20010026.
9. Pu G.-C., Chen N. Sensitivity Factor Based Short Term Dynamic Optimal Power Flow. – Journal of the Chinese Institute of Engineers, 1997, vol. 20, No. 5, pp. 585–592, DOI:10.1080/02533839.1997.9741865.
10. Niknam T., Narimani M.R., Jabbari M. Dynamic Optimal Power Flow Using Hybrid Particle Swarm Optimization and Simulated Annealing. – International Transactions on Electrical Energy Systems, 2013, vol. 23, No. 7, pp. 975–1001, DOI: 10.1002/ETEP.1633.
11. Liu B.. et al. Generalized Benders Decomposition Based Dynamic Optimal Power Flow Considering Discrete and Continuous Decision Variables. – IEEE Access, 2020, vol. 8, pp. 194260–194268, DOI:10.1109/ACCESS.2020.3033224.
12. Awad A.S.A., Turcotte D., El-Fouly T.H.M. Impact Assessment and Mitigation Techniques for High Penetration Levels of Renewable Energy Sources in Distribution Networks: Voltage-Control Perspective. – Journal of Modern Power Systems and Clean Energy, 2022, vol. 10, iss. 2, pp. 450–458, DOI:10.35833/MPCE.2020.000177.
13. Korovkin N.V, Potienko A.A. The Use of a Genetic Algorithm for Solving Electric Engineering Problems. – Electrical Technology Russia, 2002(4).
14. Toma S. et al. Optimal Control of Voltage in Distribution Systems by Voltage Reference Management. – 2008 IEEE 2nd International Power and Energy Conference, 2008, pp. 1239–1244, DOI: 10.1002/TEE.20452.
15. Agalgaonkar Y.P., Pal B.C., Jabr R.A. Distribution Voltage Control Considering the Impact of PV Generation on Tap Changers and Autonomous Regulators. – IEEE Transactions on Power Systems, 2014, vol. 29, No. 1, pp. 182–192, DOI:10.1109/TPWRS.2013.2279721.
16. Korovkin N.V, Odintsov M.V, Frolov O.V. Operational Planning in Power Systems Based on Multi-Objective Optimization. – Power Technology and Engineering, 2016, vol. 50, No. 1, pp. 75–78, DOI:10.1007/s10749-016-0662-2.
17. Belyaev N.А., et al. Methods for Optimization of Power System Operation Modes. – Russian Electrical Engineering, 2013, No. 2, DOI: 10.3103/S1068371213020028.
18. Hu Z., et al. Volt/VAr Control in Distribution Systems Using a Time-Interval Based Approach. – IEEE Proceedings-Generation, Transmission and Distribution, 2003, vol. 150, No. 5, pp. 548–554, DOI:10.1049/ip-gtd:20030562.
19. Niknam T., Azizipanah-Abarghooee R., Narimani M.R. Reserve Constrained Dynamic Optimal Power Flow Subject to Valve-Point Effects, Prohibited Zones and Multi-Fuel Constraints. – Energy, 2012, vol. 47, No. 1, pp. 451–464, DOI: 10.1016/J.ENERGY.2012.07.053.
20. Alrashidi M.R., El-Hawary M.E. A Survey of Particle Swarm Optimization Applications in Electric Power Systems. – IEEE Transactions on Evolutionary Computation, 2009, vol. 13, No. 4, pp. 913–918, DOI:10.1109/TEVC.2006.880326.
21. Ma Z., et al. Improved Chaotic Particle Swarm Optimization Algorithm with More Symmetric Distribution for Numerical Function Optimization. – Symmetry. Multidisciplinary Digital Publishing Institute, 2019, vol. 11, No. 7, DOI: 10.3390/SYM11070876.
22. Chen K., et al. An Ameliorated Particle Swarm Optimizer for Solving Numerical Optimization Problems. – Applied Soft Computing Journal, 2018, vol. 73, pp. 482–496, DOI:10.1016/j.asoc.2018.09.007.
23. Ullah Z., et al. A Solution to the Optimal Power Flow Problem Considering WT and PV Generation. – IEEE Access. 2019, vol. 7, pp. 46763–46772, DOI:10.1109/ACCESS.2019.2909561.
24. Das T., et al. Optimal Reactive Power Dispatch Incorporating Solar Power Using Jaya Algorithm. – Computational advancement in communication circuits and systems, 2020, pp. 37–48, DOI: 10.1007/978-981-13-8687-9_4.
25. Refaat A., Elgamal M., Korovkin N.V. A Novel Grid-Connected Photovoltaic Centralized Inverter Topology to Improve the Power Harvest during Partial Shading Condition. – Elektrichestvo, 2019, No. 7, pp. 59–68.
26. Refaat A., Osman M.H., Korovkin N.V. Optimum Power Extraction from Non-Uniform Aged PV Array Using Current Collector Optimizer Topology. – Elektrichestvo, 2019, No. 10, pp. 54–60.
27. Zhou W., Yang H., Fang Z. A Novel Model for Photovoltaic Array Performance Prediction. – Applied Energy, 2007, vol. 84, No. 12, pp. 1187–1198, DOI:10.1016/j.apenergy.2007.04.006.
28. Ahmed M.K., Osman M.H., Korovkin N.V. Optimal Location and Size of Multiple Renewable Distributed Generation Units in Power Systems Using an improved Version of Particle Swarm Optimization. – Elektrichestvo, 2021, No. 12, pp. 15–27.
29. Pfenninger S., Staffell I. Long-Term Patterns of European PV Output Using 30 Years of Validated Hourly Reanalysis and Satellite Data. – Energy, 2016, vol. 114, pp. 1251–1265, DOI:10.1016/j.ener-gy.2016.08.060
---
The researcher [Mamdouh K. Ahmed] is funded by a scholarship [PhD] under the Joint (Executive Program between the Arab Republic of Egypt and the Russian Federation)