Последние достижения в области сверхпроводников на основе железа

  • Чжунтан СЮЙ
  • Яньвэй MA
Ключевые слова: проводники с покрытием, сверхпроводники на основе железа, импульсное лазерное осаждение, молекулярно-лучевая эпитаксия, применение в высоких полях, критическая плотность тока

Аннотация

Открытие высокотемпературной сверхпроводимости в сверхпроводниках на основе железа (IBSS) как второго класса высокотемпературных сверхпроводящих переходных материалов после купратов оказало значительное влияние на фундаментальные и прикладные исследования сверхпроводимости. Благодаря их превосходным сверхпроводящим свойствам, в том числе чрезвычайно высоким верхним критическим полям, малой анизотропии, выгодным свойствам границ зерен (GB) и относительно высоким температурам критического перехода, они вызвали большой интерес и были проведены многочисленные исследования, чтобы понять их физическую природу и способствовать применению в высоких полях. В результате в последние годы был достигнут значительный прогресс в синтезе проводников с покрытием (CCs) на основе материалов IBS, чтобы проверить их потенциал применения в режиме сильного поля. В этом обзоре мы сосредоточимся на разработках и прогрессе в IBS CCs, в частности на свойствах, ориентированных на приложения, такие как буферный слой, текстура, GBS и транспортные свойства. Приводится обзор современного состояния трех репрезентативных систем IBS (системы 11, 122 и 1111), широко изученных в CCs, наряду с подробным описанием условий изготовления для каждой системы методом молекулярно-лучевой эпитаксии или импульсного лазерного осаждения. Представлено краткое изложение и сравнение взаимосвязей между сверхпроводящими слоями и металлическими ленточными подложками. Представлен обзор и перспективы предстоящих исследований и разработок для IBS CCs.

Биографии авторов

Чжунтан СЮЙ

PhD, доцент института электротехники, Китайская академия наук, Пекин, Китай

Яньвэй MA

PhD, профессор института электротехники, Китайская академия наук, Пекин, Китай

Литература

1. Kamihara Y., et al. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. – J. Am. Chem. Soc., 2008, vol. 130, iss. 11, pp. 3296–3297.
2. Ren Z.-A., et al. Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx] FeAs. – Chin. Phys. Lett., 2008, vol. 25, iss. 6, pp. 2215–2216.
3. Luo X., Chen X. Crystal Structure and Phase Diagrams of Iron-Based Superconductors. – Sci. China Mater., 2015, vol. 58, iss. 1, pp. 77–89.
4. Deng Z., et al. A New “111” Type Iron Pnictide Superconductor LiFeP. – Europhys. Lett., 2009, vol. 87, iss. 3, pp. 37004.
5. Wang X.C., et al. The Superconductivity at 18 K in LiFeAs System. – Solid State Commun., 2008, vol. 148, iss. 11, pp. 538–540.
6. Parker D.R., et al. ChemInform Abstract: Structure, Antiferromagnetism and Superconductivity of the Layered Iron Arsenide NaFeAs. – ChemInform, 2009, vol. 40, iss. 27.
7. Rotter M., et al. Superconductivity at 38 K in the Iron Arsenide (Ba1-xKx)Fe2As2. – Phys. Rev. Lett., 2008, vol. 101, iss. 10, pp. 107006.
8. Sasmal K., et al. Superconducting Fe-Based Compounds (A1-xSrx)Fe2As2 with A = K and Cs with Transition Temperatures up to 37 K. – Phys. Rev. Lett., 2008, vol. 101, iss. 10, pp. 107007.
9. Gurevich A. Challenges and Opportunities for Applications of Unconventional Superconductors. – Annu. Rev. Condens. Matter Phys., 2014, vol. 5, iss. 1, pp. 35–56.
10. Yamamoto A., et al. Small Anisotropy, Weak Thermal Fluctuations, and High Field Superconductivity in Co-doped Iron Pnictide Ba(Fe1−xCox)2As2. – Appl. Phys. Lett., 2009, vol. 94, iss. 6, pp. 062511.
11. Sakagami A., et al. Critical Current Density and Grain Boundary Property of BaFe2(As,P)2 Thin Films. – Physica C, 2013, vol. 494, pp. 181–184.
12. Katase T., et al. Advantageous Grain Boundaries in Iron Pnictide Superconductors. – Nat. Commun., 2011, vol. 2, pp. 409.
13. Yao C., Ma Y. Recent Breakthrough Development in Iron-Based Superconducting Wires for Practical Applications. – Supercond. Sci. Technol., 2019, vol. 32, iss. 2, pp. 023002.
14. Scanlan R.M., et al. Flux Pinning Centers in Superconducting Nb3Sn. – J. Appl. Phys., 1975, vol. 46, iss. 5, pp. 2244–2249.
15. Hiramatsu H., et al. Microstructure and Transport Properties of [001]-tilt Bicrystal Grain Boundaries in Iron Pnictide Superconductor, Cobalt-Doped BaFe2As2. – Mater. Sci. Eng., B, 2012, vol. 177, iss. 7, pp. 515–519.
16. Iida K., et al. Grain Boundary Characteristics of Fe-based Superconductors. – Supercond. Sci. Technol., 2020, vol. 33, iss. 4,
pp. 043001.
17. Moodera J.S., et al. Critical-Magnetic-Field Anisotropy in Single-Crystal YBa2Cu3O7. – Phys. Rev. B, 1988, vol. 37, iss. 1,
pp. 619–622.
18. Orlando T.P., et al. Upper Critical Fields and Anisotropy Limits of High-Tc Superconductors R1Ba2Cu3O6, Where R = Nd, Eu, Gd, Dy, Ho, Er, and Tm, and YBa2Cu3O7-y. – Phys. Rev. B, 1987, vol. 36, iss. 4, pp. 2394–2397.
19. Naughton M.J., et al. Orientational Anisotropy of the Upper Critical Field in Single-Crystal YBa2Cu3O7 and Bi2.2CaSr1.9Cu2O8+x. – Phys. Rev. B, 1988, vol. 38, iss. 13, pp. 9280–9283.
20. Zhang X., et al. Realization of Practical Level Current Densities in Sr0.6K0.4Fe2As2 Tape Conductors for High-Field Applications. – Appl. Phys. Lett., 2014, vol. 104, iss. 20, pp. 202601.
21. Zhang X., et al. Superconducting Properties of 100-m Class Sr0.6K0.4Fe2As2 Tape and Pancake Coils. – IEEE Trans. Appl. Super-cond., 2017, vol. 27, iss. 4, pp. 7300705.
22. Wang D., et al. First Performance Test of a 30 Mm Iron-Based Superconductor Single Pancake Coil Under a 24 T Background Field. – Supercond. Sci. Technol., 2019, vol. 32, iss. 4, pp. 04LT01.
23. Trommler S., et al. The Influence of the Buffer Layer Architecture on Transport Properties for BaFe1.8Co0.2As2 films on Technical Substrates. – Appl. Phys. Lett., 2012, vol. 100, iss. 12, pp. 122602.
24. Si W., et al. High Current Superconductivity in FeSe0.5Te0.5-Coated Conductors at 30 Tesla. – Nat. Commun., 2013, vol. 4, pp. 1347.
25. Yeh K.-W., et al. Tellurium Substitution Effect on Super-conductivity of the α-Phase Iron Selenide. – Europhys. Lett., 2008, vol. 84, iss. 3, pp. 37002.
26. Si W., et al. Iron-Chalcogenide FeSe0.5Te0.5 Coated Super-conducting Tapes for High Field Applications. – Appl. Phys. Lett., 2011, vol. 98, iss. 26, pp. 262509.
27. Sylva G., et al. Fe(Se,Te) Coated Conductors Deposited on Simple Rolling-Assisted Biaxially Textured Substrate Templates. – Supercond. Sci. Technol., 2019, vol. 32, iss. 8, pp. 084006.
28. Sylva G., et al. The Role of Texturing and Thickness of Oxide Buffer Layers in the Superconducting Properties of Fe(Se,Te) Coated Conductors. – Supercond. Sci. Technol., 2020, vol. 33, iss. 11, pp. 114002.
29. Anna Thomas A., et al. Comparative Study of Fe(Se,Te) Thin Films on Flexible Coated Conductor Templates and Single-Crystal Substrates. – Supercond. Sci. Technol., 2021, vol. 34, iss. 11, pp. 115013.
30. Fan F., et al. Angular Dependence of the Critical Current Density in FeSe0.5Te0.5 Thin Films on Metal Substrates. – Supercond. Sci. Technol., 2021, vol. 34, iss. 12, pp. 125015.
31. Xu Z., et al. High-Performance FeSe0.5Te0.5 Thin Films Fabricated on Less-Well-Textured Flexible Coated Conductor Templates. – Supercond. Sci. Technol., 2017, vol. 30, iss. 3, pp. 035003.
32. Holleis S., et al. Magnetic Granularity in PLD-grown Fe(Se,Te) Films on Simple RABiTS Templates. – Supercond. Sci. Technol., 2022, vol. 35, iss. 7, pp. 074001.
33. Bellingeri E., et al. Tc = 21 K in Epitaxial FeSe0.5Te0.5 Thin Films with Biaxial Compressive Strain. – Appl. Phys. Lett., 2010, vol. 96, iss. 10, pp. 102512.
34. Demura S., et al. Electrochemical Deposition of FeSe on RABiTS Tapes. – J. Phys. Soc. Jpn., 2016, vol. 85, iss. 1, pp. 015001.
35. Yamashita A., et al. Observation of Zero Resistance in As-Electrodeposited FeSe. – Solid State Commun., 2018, vol. 270, pp. 72–75.
36. Sylva G., et al. Analysis of Fe(Se,Te) Films Deposited On Unbuffered Invar 36. – IEEE Trans. Appl. Supercond., 2019, vol. 29, iss. 5, pp. 1–5.
37. Huang J., et al. A Simplified Superconducting Coated Conductor Design with Fe-Based Superconductors on Glass and Flexible Metallic Substrates. – J. Alloys Compd., 2015, vol. 647, pp. 380–385.
38. Huang H., et al. High Transport Current Superconductivity in Powder-in-Tube Ba0.6K0.4Fe2As2 Tapes at 27 T. – Supercond. Sci. Technol., 2017, vol. 31, iss. 1, pp. 015017.
39. Thersleff T., et al. Coherent Interfacial Bonding on the FeAs Tetrahedron in Fe/Ba(Fe1−xCox)2As2 bilayers. – Appl. Phys. Lett., 2010, vol. 97, iss. 2, pp. 022506.
40. Iida K., et al. Epitaxial Growth of Superconducting Ba(Fe1-xCox)2As2 Thin Films on Technical Ion Beam Assisted Deposi-tion MgO Substrates. – Appl. Phys. Express, 2011, vol. 4, iss. 1, pp. 013103.
41. Trommler S., et al. Architecture, Microstructure and Jc Ani-sotropy of Highly Oriented Biaxially Textured Co-Doped BaFe2As2 on Fe/IBAD-MgO-Buffered Metal Tapes. – Supercond. Sci. Technol., 2012, vol. 25, iss. 8, pp. 084019.
42. Katase T., et al. Biaxially Textured Cobalt-Doped BaFe2As2 Films with High Critical Current Density over 1 MA/cm2 on MgO-Buffered Metal-Tape Flexible Substrates. – Appl. Phys. Lett., 2011, vol. 98, iss. 24, pp. 242510.
43. Xu Z., et al. Transport Properties and Pinning Analysis for Co-doped BaFe2As2 Thin Films on Metal Tapes. – Supercond. Sci. Technol., 2018, vol. 31, iss. 5, pp.
44. Xu Z., et al. Thickness Dependence of Structural and Superconducting Properties of Co-doped BaFe2As2 Coated Conductors. – iScience, 2021, vol. 24, iss. 8, pp. 102922.
45. Kasahara S., et al. Evolution from non-Fermi- to Fermi-Liquid Transport Via Isovalent Doping in BaFe2(As1−xPx)2 Superconductors. – Phys. Rev. B, 2010, vol. 81, iss. 18, pp. 184519.
46. Kurth F., et al. Unusually High Critical Current of Clean P-doped BaFe2As2 Single Crystalline Thin Film. – Appl. Phys. Lett., 2015, vol. 106, iss. 7, pp. 072602.
47. Miura M., et al. Enhanced Critical Current Density in BaFe2(As0.66P0.33)2 Nanocomposite Superconducting Films. – Super-cond. Sci. Technol., 2019, vol. 32, iss. 6, pp. 064005.
48. Sato H., et al. Enhanced Critical-Current in P-Doped BaFe2As2 Thin Films on Metal Substrates Arising from Poorly Aligned Grain Boundaries. – Sci. Rep., 2016, vol. 6, pp. 36828.
49. Iida K., et al. High-Field Transport Properties of a P-Doped BaFe2As2 Film on Technical Substrate. – Sci. Rep., 2017, vol. 7, pp. 39951.
50. Hiramatsu H., et al. BaFe2(As1-xPx)2 (x = 0.22−0.42) Thin Films Grown on Practical Metal–Tape Substrates and Their Critical Current Densities. – Supercond. Sci. Technol., 2017, vol. 30, iss. 4, pp. 044003.
51. Pallecchi I., et al. Application Potential of Fe-Based Superconductors. – Supercond. Sci. Technol., 2015, vol. 28, iss. 11, pp. 114005.
52. Kondo K., et al. NdFeAs(O,H) Epitaxial Thin Films with High Critical Current Density. – Supercond. Sci. Technol., 2020, vol. 33, iss. 9, 09LT01.
53. Kauffmann-Weiss S., et al. Microscopic Origin of Highly Enhanced Current Carrying Capabilities of Thin NdFeAs(O,F) Films. – Nanoscale Advances, 2019, vol. 1, iss. 8, pp. 3036–3048.
54. Iida K., et al. Highly Textured Oxypnictide Superconducting Thin Films on Metal Substrates. – Appl. Phys. Lett., 2014, vol. 105, iss. 17, pp. 172602.
55. Zhang Q., et al. Enhanced Transport Critical Current Density in Sn-added SmFeAsO1-xFx Tapes Prepared by the PIT Method. – Supercond. Sci. Technol., 2017, vol. 30, iss. 6, pp. 065004.
56. Guo Z., et al. Nanoscale Texture and Microstructure in a NdFeAs(O,F)/IBAD-MgO Superconducting Thin Film with Superior Critical Current Properties. – ACS Appl. Electron. Mater., 2021, vol. 3, iss. 7, pp. 3158–3166.
57. Haindl S., et al. In-situ Growth of Superconducting SmO1-xFxFeAs thin Films by Pulsed Laser Deposition. – Sci. Rep., 2016, vol. 6, pp. 35797.
58. Miura M., et al. Strongly Enhanced Flux Pinning in One-Step Deposition of BaFe2(As0.66P0.33)2 Superconductor Films with Uniformly Dispersed BaZrO3 Nanoparticles. – Nat. Commun., 2013, vol. 4, pp. 2499.
59. Tarantini C., et al. Effect of α-Particle Irradiation on a NdFeAs(O,F) Thin Film. – Supercond. Sci. Technol., 2018, vol. 31, iss. 3, pp. 034002.
60. Sylva G., et al. Effects of High-Energy Proton Irradiation on the Superconducting Properties of Fe(Se,Te) Thin Films. – Supercond. Sci. Technol., 2018, vol. 31, iss. 5, pp. 054001.
61. Nazir M., et al. Enhancement of Critical Current Density in Helium Ion Irradiated Ba(Fe, Co)2As2 Thin Films. – Supercond. Sci. Technol., 2020, vol. 33, iss. 7, pp. 075012.
---
Работа частично поддержана Национальной ключевой программой исследований и разработок Китая (Гранты № 2017YFE0129500 и 2018YFA0704200), Национальным фондом естественных наук Китая (Гранты № 51861135311, U1832213, 52177026 и 51721005), Программой стратегических приоритетных исследований Китайской академии наук (Грант № XDB25000000) и Ключевой исследовательской программой передовых наук Китайской академии наук (QYZDJ-SSW-JSC026)
#
1. Kamihara Y., et al. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. – J. Am. Chem. Soc., 2008, vol. 130, iss. 11, pp. 3296–3297.
2. Ren Z.-A., et al. Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx] FeAs. – Chin. Phys. Lett., 2008, vol. 25, iss. 6, pp. 2215–2216.
3. Luo X., Chen X. Crystal Structure and Phase Diagrams of Iron-Based Superconductors. – Sci. China Mater., 2015, vol. 58, iss. 1, pp. 77–89.
4. Deng Z., et al. A New “111” Type Iron Pnictide Superconductor LiFeP. – Europhys. Lett., 2009, vol. 87, iss. 3, pp. 37004.
5. Wang X.C., et al. The Superconductivity at 18 K in LiFeAs System. – Solid State Commun., 2008, vol. 148, iss. 11, pp. 538–540.
6. Parker D.R., et al. ChemInform Abstract: Structure, Antiferromagnetism and Superconductivity of the Layered Iron Arsenide NaFeAs. – ChemInform, 2009, vol. 40, iss. 27.
7. Rotter M., et al. Superconductivity at 38 K in the Iron Arsenide (Ba1-xKx)Fe2As2. – Phys. Rev. Lett., 2008, vol. 101, iss. 10, pp. 107006.
8. Sasmal K., et al. Superconducting Fe-Based Compounds (A1-xSrx)Fe2As2 with A = K and Cs with Transition Temperatures up to 37 K. – Phys. Rev. Lett., 2008, vol. 101, iss. 10, pp. 107007.
9. Gurevich A. Challenges and Opportunities for Applications of Unconventional Superconductors. – Annu. Rev. Condens. Matter Phys., 2014, vol. 5, iss. 1, pp. 35–56.
10. Yamamoto A., et al. Small Anisotropy, Weak Thermal Fluctuations, and High Field Superconductivity in Co-doped Iron Pnictide Ba(Fe1−xCox)2As2. – Appl. Phys. Lett., 2009, vol. 94, iss. 6, pp. 062511.
11. Sakagami A., et al. Critical Current Density and Grain Boundary Property of BaFe2(As,P)2 Thin Films. – Physica C, 2013, vol. 494, pp. 181–184.
12. Katase T., et al. Advantageous Grain Boundaries in Iron Pnictide Superconductors. – Nat. Commun., 2011, vol. 2, pp. 409.
13. Yao C., Ma Y. Recent Breakthrough Development in Iron-Based Superconducting Wires for Practical Applications. – Supercond. Sci. Technol., 2019, vol. 32, iss. 2, pp. 023002.
14. Scanlan R.M., et al. Flux Pinning Centers in Superconducting Nb3Sn. – J. Appl. Phys., 1975, vol. 46, iss. 5, pp. 2244–2249.
15. Hiramatsu H., et al. Microstructure and Transport Properties of [001]-tilt Bicrystal Grain Boundaries in Iron Pnictide Superconductor, Cobalt-Doped BaFe2As2. – Mater. Sci. Eng., B, 2012, vol. 177, iss. 7, pp. 515–519.
16. Iida K., et al. Grain Boundary Characteristics of Fe-based Superconductors. – Supercond. Sci. Technol., 2020, vol. 33, iss. 4, pp. 043001.
17. Moodera J.S., et al. Critical-Magnetic-Field Anisotropy in Single-Crystal YBa2Cu3O7. – Phys. Rev. B, 1988, vol. 37, iss. 1, pp. 619–622.
18. Orlando T.P., et al. Upper Critical Fields and Anisotropy Limits of High-Tc Superconductors R1Ba2Cu3O6, Where R = Nd, Eu, Gd, Dy, Ho, Er, and Tm, and YBa2Cu3O7-y. – Phys. Rev. B, 1987, vol. 36, iss. 4, pp. 2394–2397.
19. Naughton M.J., et al. Orientational Anisotropy of the Upper Critical Field in Single-Crystal YBa2Cu3O7 and Bi2.2CaSr1.9Cu2O8+x. – Phys. Rev. B, 1988, vol. 38, iss. 13, pp. 9280–9283.
20. Zhang X., et al. Realization of Practical Level Current Densities in Sr0.6K0.4Fe2As2 Tape Conductors for High-Field Applications. – Appl. Phys. Lett., 2014, vol. 104, iss. 20, pp. 202601.
21. Zhang X., et al. Superconducting Properties of 100-m Class Sr0.6K0.4Fe2As2 Tape and Pancake Coils. – IEEE Trans. Appl. Supercond., 2017, vol. 27, iss. 4, pp. 7300705.
22. Wang D., et al. First Performance Test of a 30 Mm Iron-Based Superconductor Single Pancake Coil Under a 24 T Background Field. – Supercond. Sci. Technol., 2019, vol. 32, iss. 4, pp. 04LT01.
23. Trommler S., et al. The Influence of the Buffer Layer Architecture on Transport Properties for BaFe1.8Co0.2As2 films on Technical Substrates. – Appl. Phys. Lett., 2012, vol. 100, iss. 12, pp. 122602.
24. Si W., et al. High Current Superconductivity in FeSe0.5Te0.5-Coated Conductors at 30 Tesla. – Nat. Commun., 2013, vol. 4, pp. 1347.
25. Yeh K.-W., et al. Tellurium Substitution Effect on Superconductivity of the α-Phase Iron Selenide. – Europhys. Lett., 2008, vol. 84, iss. 3, pp. 37002.
26. Si W., et al. Iron-Chalcogenide FeSe0.5Te0.5 Coated Super-conducting Tapes for High Field Applications. – Appl. Phys. Lett., 2011, vol. 98, iss. 26, pp. 262509.
27. Sylva G., et al. Fe(Se,Te) Coated Conductors Deposited on Simple Rolling-Assisted Biaxially Textured Substrate Templates. – Supercond. Sci. Technol., 2019, vol. 32, iss. 8, pp. 084006.
28. Sylva G., et al. The Role of Texturing and Thickness of Oxide Buffer Layers in the Superconducting Properties of Fe(Se,Te) Coated Conductors. – Supercond. Sci. Technol., 2020, vol. 33, iss. 11, pp. 114002.
29. Anna Thomas A., et al. Comparative Study of Fe(Se,Te) Thin Films on Flexible Coated Conductor Templates and Single-Crystal Substrates. – Supercond. Sci. Technol., 2021, vol. 34, iss. 11, pp. 115013.
30. Fan F., et al. Angular Dependence of the Critical Current Density in FeSe0.5Te0.5 Thin Films on Metal Substrates. – Supercond. Sci. Technol., 2021, vol. 34, iss. 12, pp. 125015.
31. Xu Z., et al. High-Performance FeSe0.5Te0.5 Thin Films Fabricated on Less-Well-Textured Flexible Coated Conductor Templates. – Supercond. Sci. Technol., 2017, vol. 30, iss. 3, pp. 035003.
32. Holleis S., et al. Magnetic Granularity in PLD-grown Fe(Se,Te) Films on Simple RABiTS Templates. – Supercond. Sci. Technol., 2022, vol. 35, iss. 7, pp. 074001.
33. Bellingeri E., et al. Tc = 21 K in Epitaxial FeSe0.5Te0.5 Thin Films with Biaxial Compressive Strain. – Appl. Phys. Lett., 2010, vol. 96, iss. 10, pp. 102512.
34. Demura S., et al. Electrochemical Deposition of FeSe on RABiTS Tapes. – J. Phys. Soc. Jpn., 2016, vol. 85, iss. 1, pp. 015001.
35. Yamashita A., et al. Observation of Zero Resistance in As-Electrodeposited FeSe. – Solid State Commun., 2018, vol. 270, pp. 72–75.
36. Sylva G., et al. Analysis of Fe(Se,Te) Films Deposited On Unbuffered Invar 36. – IEEE Trans. Appl. Supercond., 2019, vol. 29, iss. 5, pp. 1–5.
37. Huang J., et al. A Simplified Superconducting Coated Conductor Design with Fe-Based Superconductors on Glass and Flexible Metallic Substrates. – J. Alloys Compd., 2015, vol. 647, pp. 380–385.
38. Huang H., et al. High Transport Current Superconductivity in Powder-in-Tube Ba0.6K0.4Fe2As2 Tapes at 27 T. – Supercond. Sci. Technol., 2017, vol. 31, iss. 1, pp. 015017.
39. Thersleff T., et al. Coherent Interfacial Bonding on the FeAs Tetrahedron in Fe/Ba(Fe1−xCox)2As2 bilayers. – Appl. Phys. Lett., 2010, vol. 97, iss. 2, pp. 022506.
40. Iida K., et al. Epitaxial Growth of Superconducting Ba(Fe1-xCox)2As2 Thin Films on Technical Ion Beam Assisted Deposition MgO Substrates. – Appl. Phys. Express, 2011, vol. 4, iss. 1, pp. 013103.
41. Trommler S., et al. Architecture, Microstructure and Jc Anisotropy of Highly Oriented Biaxially Textured Co-Doped BaFe2As2 on Fe/IBAD-MgO-Buffered Metal Tapes. – Supercond. Sci. Technol., 2012, vol. 25, iss. 8, pp. 084019.
42. Katase T., et al. Biaxially Textured Cobalt-Doped BaFe2As2 Films with High Critical Current Density over 1 MA/cm2 on MgO-Buffered Metal-Tape Flexible Substrates. – Appl. Phys. Lett., 2011, vol. 98, iss. 24, pp. 242510.
43. Xu Z., et al. Transport Properties and Pinning Analysis for Co-doped BaFe2As2 Thin Films on Metal Tapes. – Supercond. Sci. Technol., 2018, vol. 31, iss. 5, pp.
44. Xu Z., et al. Thickness Dependence of Structural and Superconducting Properties of Co-doped BaFe2As2 Coated Conductors. – iScience, 2021, vol. 24, iss. 8, pp. 102922.
45. Kasahara S., et al. Evolution from non-Fermi- to Fermi-Liquid Transport Via Isovalent Doping in BaFe2(As1−xPx)2 Superconductors. – Phys. Rev. B, 2010, vol. 81, iss. 18, pp. 184519.
46. Kurth F., et al. Unusually High Critical Current of Clean P-doped BaFe2As2 Single Crystalline Thin Film. – Appl. Phys. Lett., 2015, vol. 106, iss. 7, pp. 072602.
47. Miura M., et al. Enhanced Critical Current Density in BaFe2(As0.66P0.33)2 Nanocomposite Superconducting Films. – Super-cond. Sci. Technol., 2019, vol. 32, iss. 6, pp. 064005.
48. Sato H., et al. Enhanced Critical-Current in P-Doped BaFe2As2 Thin Films on Metal Substrates Arising from Poorly Aligned Grain Boundaries. – Sci. Rep., 2016, vol. 6, pp. 36828.
49. Iida K., et al. High-Field Transport Properties of a P-Doped BaFe2As2 Film on Technical Substrate. – Sci. Rep., 2017, vol. 7, pp. 39951.
50. Hiramatsu H., et al. BaFe2(As1-xPx)2 (x = 0.22−0.42) Thin Films Grown on Practical Metal–Tape Substrates and Their Critical Current Densities. – Supercond. Sci. Technol., 2017, vol. 30, iss. 4, pp. 044003.
51. Pallecchi I., et al. Application Potential of Fe-Based Superconductors. – Supercond. Sci. Technol., 2015, vol. 28, iss. 11, pp. 114005.
52. Kondo K., et al. NdFeAs(O,H) Epitaxial Thin Films with High Critical Current Density. – Supercond. Sci. Technol., 2020, vol. 33, iss. 9, 09LT01.
53. Kauffmann-Weiss S., et al. Microscopic Origin of Highly Enhanced Current Carrying Capabilities of Thin NdFeAs(O,F) Films. – Nanoscale Advances, 2019, vol. 1, iss. 8, pp. 3036–3048.
54. Iida K., et al. Highly Textured Oxypnictide Superconducting Thin Films on Metal Substrates. – Appl. Phys. Lett., 2014, vol. 105, iss. 17, pp. 172602.
55. Zhang Q., et al. Enhanced Transport Critical Current Density in Sn-added SmFeAsO1-xFx Tapes Prepared by the PIT Method. – Supercond. Sci. Technol., 2017, vol. 30, iss. 6, pp. 065004.
56. Guo Z., et al. Nanoscale Texture and Microstructure in a NdFeAs(O,F)/IBAD-MgO Superconducting Thin Film with Superior Critical Current Properties. – ACS Appl. Electron. Mater., 2021, vol. 3, iss. 7, pp. 3158–3166.
57. Haindl S., et al. In-situ Growth of Superconducting SmO1-xFxFeAs thin Films by Pulsed Laser Deposition. – Sci. Rep., 2016, vol. 6, pp. 35797.
58. Miura M., et al. Strongly Enhanced Flux Pinning in One-Step Deposition of BaFe2(As0.66P0.33)2 Superconductor Films with Uniformly Dispersed BaZrO3 Nanoparticles. – Nat. Commun., 2013, vol. 4, pp. 2499.
59. Tarantini C., et al. Effect of α-Particle Irradiation on a NdFeAs(O,F) Thin Film. – Supercond. Sci. Technol., 2018, vol. 31, iss. 3, pp. 034002.
60. Sylva G., et al. Effects of High-Energy Proton Irradiation on the Superconducting Properties of Fe(Se,Te) Thin Films. – Supercond. Sci. Technol., 2018, vol. 31, iss. 5, pp. 054001.
61. Nazir M., et al. Enhancement of Critical Current Density in Helium Ion Irradiated Ba(Fe, Co)2As2 Thin Films. – Supercond. Sci. Technol., 2020, vol. 33, iss. 7, pp. 075012.
---
This work is partially supported by the National Key R&D Program of China (Grant Nos. 2017YFE0129500 and 2018YFA0704200), the National Natural Science Foundation of China (Grant Nos. 51861135311, U1832213, 52177026 and 51721005), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000), and Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDJ-SSW-JSC026)
Опубликован
2022-06-15
Раздел
Статьи