Исследование влияния синтетической инерции на динамическую устойчивость электроэнергетических систем

  • Игорь Андреевич Разживин
  • Алексей Александрович Суворов
  • Михаил Владимирович Андреев
  • Владимир Евгеньевич Рудник
  • Александр Сергеевич Гусев
Ключевые слова: ветроэнергетические установки, синтетическая инерция, динамическая устойчивость, общая инерция, возобновляемые источники энергии

Аннотация

Развитие ветроэнергетики во всем мире является перспективным решением энергетического кризиса. В энергосистемах с преобладающей долей ветроэнергетических установок, присоединяемых через силовые преобразователи, становится значительным влияние ветроустановок на динамические свойства энергосистемы. Одной из важных проблем является снижение общей инерции энергосистемы. По этой причине системные операторы предъявляют требования к подключаемым ветроэлектростанциям по управлению активной мощностью и участию в регулировании частоты. Одним из решений является применение синтетической инерции в системе управления ветроэнергетических установок. Исследования в этой области посвящены вопросам улучшения устойчивости по частоте и координации регулятора синтетической инерции с другими системами управления ветроэнергетических установок. Однако вопросы влияния синтетической инерции и ее настройки на устойчивость энергосистемы мало изучены. В работе проведен анализ влияния синтетической инерции на динамическую устойчивость энергосистемы. Показано, что при подстройке параметров синтетической инерции можно обеспечить не только требуемый инерционный отклик, но и повысить динамическую устойчивость энергосистем. Также исследовано влияние времени окна измерения и расчета скорости изменения частоты, которое при определенных режимах имеет важное значение. Результаты получены для тестовой схемы и схемы энергосистемы реальной размерности.

Биографии авторов

Игорь Андреевич Разживин

кандидат техн. наук, доцент отделения электроэнергетики и электротехники Инженерной школы энергетики, Национальный исследовательский Томский политехнический университет, Томск, Россия

Алексей Александрович Суворов

кандидат техн. наук, доцент отделения электроэнергетики и электротехники Инженерной школы энергетики, Национальный исследовательский Томский политехнический университет, Томск, Россия

Михаил Владимирович Андреев

кандидат техн. наук, доцент отделения электроэнергетики и электротехники Инженерной школы энергетики, Национальный исследовательский Томский политехнический университет, Томск, Россия

Владимир Евгеньевич Рудник

аспирант, инженер-исследователь научно-исследовательской лаборатории «Моделирование электроэнергетических систем» Инженерной школы энергетики, Национальный исследовательский Томский политехнический университет, Томск, Россия

Александр Сергеевич Гусев

доктор техн. наук, профессор отделения электроэнергетики и электротехники Инженерной школы энергетики, Национальный исследовательский Томский политехнический университет, Томск, Россия

Литература

1. Mehigan L. Renewables in the European Power System and the Impact on System Rotational Inertia. – Energy, 2020, vol. 203, 117776, DOI: 10.1016/j.energy.2020.117776.
2. Report Prepared by RG-CE System Protection and Dynamics Sub Group. Frequency Stability Evaluation Criteria for the Synchronous Zone of Continental Europe – Requirements and Impacting Factors [Электрон. ресурс], URL: www.entsoe.eu (дата обращения 20.02.2022).
3. High Penetration of Power Electronic Interfaced Power Sources and the Potential Contribution of Grid Forming Converters ENTSO-E Technical Group on High Penetration of Power Electronic Interfaced Power Sources [Электрон. ресурс], URL: https://euagenda.eu/upload/publications/untitled-292051-ea.pdf (дата обращения 20.02.2022).
4. Migrate Deliverable 1.1, Report on systemic issues. [Электрон. ресурс], URL: https://www.h2020-migrate.eu/ (дата обращения 20.02.2022).
5. Diaz-Gonzalez F., et al. Participation of Wind Power Plants in System Frequency Control: Review of Grid Code Requirements and Control Methods. – Renewable and Sustainable Energy Reviews, 2014, vol. 34, pp. 551–564, DOI: 10.1016/j.rser.2014.03.040.
6. ENTSO-E. Entso-E Network Code for Requirements for Grid Connection Applicable to all Generators [Электрон. ресурс], URL: https://www.entsoe.eu (дата обращения 20.02.2022).
7. EirGrid gridcode version 4.0 [Электрон. ресурс], URL: http://www.eirgrid.com (дата обращения 20.02.2022).
8. National Grid plc. The Grid Code [Электрон. ресурс], URL: http://www.nationalgrid.com/uk (дата обращения 20.02.2022).
9. Cheng, Y., et al. Smart Frequency Control in Low Inertia Energy Systems Based on Frequency Response Techniques: A Review. – Applied Energy, 2020, vol. 279, DOI: 10.1016/j.apenergy.2020.115798.
10. Dreidy M., Mokhlis H., Mekhilef S. Inertia Response and Frequency Control Techniques for Renewable Energy Sources: A Review. – Renewable and Sustainable Energy Reviews, 2017, vol. 69, pp. 144–155, DOI: 10.1016/j.rser.2016.11.170.
11. Diaz-Gonzalez F., et al. Participation of Wind Power Plants in System Frequency Control: Review of Grid Code Requirements and Control Methods. – Renewable and Sustainable Energy Reviews, 2014, vol. 34, pp. 551–564, DOI: 10.1016/j.rser.2014.03.040.
12. Ma H. T., Chowdhury B.H. Working Towards Frequency Regulation with Wind Plants: Combined Control Approaches. – Renewable Power Generation, 2010, vol. 4, pp. 308–316, DOI: 10.1049/iet-rpg.2009.0100.
13. Morren J., et al. Wind Turbines Emulating Inertia and Supporting Primary Frequency Control. – IEEE Transactions on Power Systems, 2006, vol. 21, No. 1, pp. 433–434, DOI: 10.1109/TPWRS. 2005.861956.
14. Wang Z., Wu W. Coordinated Control Method for DFIG-Based Wind Farm to Provide Primary Frequency Regulation Service. – IEEE Transactions on Power Systems, 2018, vol. 33, No. 3, pp. 2644–2659, DOI: 10.1109/TPWRS.2017.2755685.
15. Nguyen H.T., et al. Frequency Stability Enhancement for Low Inertia Systems Using Synthetic Inertia of Wind Power. – IEEE Power and Energy Society General Meeting, 2017, DOI: 10.1109/PESGM.2017.8274566.
16. Meng J., et al. Adaptive Virtual Inertia Control of Distributed Generator for Dynamic Frequency Support in Microgrid. – IEEE Energy Conversion Congress and Exposition (ECCE), 2016, DOI: 10.1109/ECCE.2016.7854825.
17. Toulabi M., Dobakhshari A.S., Ranjbar A.M. An Adaptive Feedback Linearization Approach to Inertial Frequency Response of Windturbines. – IEEE Transactions on Sustainable Energy, 2017, vol. 8, No. 3, pp. 916–926.
18. Shi Q., Wang G., Ma W. Coordinated Virtual Inertia Control Strategy for D-PMSG Considering Frequency Regulation Ability. – Journal of Electrical Engineering and Technology, 2016, vol. 11, pp. 1921–1935, DOI:10.5370/jeet.2016.11.6.1556.
19. Hang Z.S., et al. Coordinated Frequency Regulation by Doubly Fed Induction Generator-Based Wind Power Plants. – IET Renewable Power Generation, 2012, vol. 6, pp. 38–47, DOI:10.1049/iet-rpg.2010.0208.
20. Hatziargyriou N., et al. Definition and Classification of Power System Stability – Revisited and Extended. – IEEE Transactions on Power Systems, 2021, vol. 36, No. 4, pp. 3271–3281. DOI: 10.1109/TPWRS.2020.3041774.
21. Yu M., et al. Adaptive control scheme based on transient stability mechanism for photovoltaic plants. – IET Renewable Power Generation, 2020, vol. 14, pp. 5011–5019, DOI: 10.1049/iet-gtd.2019.1686.
22. Leelaruji R., Bollen M. Synthetic Inertia to Improve Frequency Stability and How Often It Is Needed: Energiforsk AB Report. STRI AB, 2015, 68 p.
23. Chamorro H.R., et al. Innovative Primary Frequency Control in Low-Inertia Power Systems Based on Wide-Area RoCoF Sharing. – IET Energy Systems Integration, 2020, 2(2), DOI: 10.1049/iet-esi.2020.0001.
24. ENTSO-E. Rate of Change of Frequency (RoCoF) Withstand Capability ENTSO-E Guidance Document for National Implementation for Network Codes on Grid Connection; ENTSO-E: Brussels, Belgium, 2018.
25. National Grid ESO. Operability Strategy Report; National Grid ESO: Warwick, UK, 2019.
26. Evaluation Report on the Problem of ROCOF Measurement in the Context of Actual Use Cases and the ‘Wish List’ of Accuracy and Latency from an End-user Point of View [Электрон. ресурс], URL: http://www.rocofmetrology.eu (дата обращения 20.02.2022).
27. UK Distribution Code: DC0079 – Frequency Changes during Large Disturbances and Their Impact on the Total System [Электрон. ресурс], URL: http://www.dcode.org.uk (дата обращения 20.02.2022).
28. E NTSO-E. High Penetration of Power Electronic Interfaced Power Sources (HPoPEIPS). Guidance Document for National Implementation for Network Codes on Grid Connection. Tech. Rep, 2017, 37 p.
29. Rate of Change of Frequency (ROCOF) Review of TSO and Generator. Submissions Final Report, 2013, 40 p.
30. Duckwitz D., Fischer B. Modeling and Design of df/dt -Based Inertia Control for Power Converters. – IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, vol. 5, pp. 1553–1564, DOI: 10.1109/JESTPE.2017.2703814.
31. Díaz-González F., et al. Participation of Wind Power Plants in System Frequency Control: Review of Grid Code Requirements and Control Methods. – Renewable and Sustainable Energy Reviews, 2014, vol. 34, pp. 551–564, DOI: 10.1016/j.rser.2014.03.040.
32. Van de Vyver J., et al. Droop Control as an Alternative Inertial Response Strategy for the Synthetic Inertia on Wind Turbines. – IEEE Transactions on Power Systems, 2016, vol. 31, No. 2, pp. 1129–1138, DOI: 10.1109/TPWRS.2015.2417758.
33. Gonzalez-Longatt F.M. Impact of Emulated Inertia from Wind Power on Under-Frequency Protection Schemes of Future Power Systems. – Journal of Modern Power Systems and Clean Energy, 2016, vol. 4, No. 2, pp. 211–218, DOI: 10.1007/s40565-015-0143-x.
---
Работа выполнена при поддержке Министерства науки и высшего образования РФ, грант MK-3249.2021.4
#
1. Mehigan L. Renewables in the European Power System and the Impact on System Rotational Inertia. – Energy, 2020, vol. 203, 117776, DOI: 10.1016/j.energy.2020.117776.
2. Report Prepared by RG-CE System Protection and Dynamics Sub Group. Frequency Stability Evaluation Criteria for the Synchronous Zone of Continental Europe – Requirements and Impacting Factors [Electron. resource], URL: www.entsoe.eu (Date of appeal 20.02.2022).
3. High Penetration of Power Electronic Interfaced Power Sources and the Potential Contribution of Grid Forming Converters ENTSO-E Technical Group on High Penetration of Power Electronic Interfaced Power Sources [Electron. resource], URL: https://euagenda.eu/upload/publications/untitled-292051-ea.pdf (Date of appeal 20.02.2022).
4. Migrate Deliverable 1.1, Report on systemic issues. [Electron. re-source], URL: https://www.h2020-migrate.eu/ (Date of appeal 20.02.2022).
5. Diaz-Gonzalez F., et al. Participation of Wind Power Plants in System Frequency Control: Review of Grid Code Requirements and Control Methods. – Renewable and Sustainable Energy Reviews, 2014, vol. 34, pp. 551–564, DOI: 10.1016/j.rser.2014.03.040.
6. ENTSO-E. Entso-E Network Code for Requirements for Grid Connection Applicable to all Generators [Electron. resource], URL: https://www.entsoe.eu (Date of appeal 20.02.2022).
7. EirGrid gridcode version 4.0 [Электрон. ресурс], URL: http://www.eirgrid.com (Date of appeal 20.02.2022).
8. National Grid plc. The Grid Code [Электрон. ресурс], URL: http://www.nationalgrid.com/uk (Date of appeal 20.02.2022).
9. Cheng, Y., et al. Smart Frequency Control in Low Inertia Energy Systems Based on Frequency Response Techniques: A Review. – Applied Energy, 2020, vol. 279, DOI: 10.1016/j.apenergy.2020.115798.
10. Dreidy M., Mokhlis H., Mekhilef S. Inertia Response and Frequency Control Techniques for Renewable Energy Sources: A Review. – Renewable and Sustainable Energy Reviews, 2017, vol. 69, pp. 144–155, DOI: 10.1016/j.rser.2016.11.170.
11. Diaz-Gonzalez F., et al. Participation of Wind Power Plants in System Frequency Control: Review of Grid Code Requirements and Control Methods. – Renewable and Sustainable Energy Reviews, 2014, vol. 34, pp. 551–564, DOI: 10.1016/j.rser.2014.03.040.
12. Ma H. T., Chowdhury B.H. Working Towards Frequency Regulation with Wind Plants: Combined Control Approaches. – Renewable Power Generation, 2010, vol. 4, pp. 308–316, DOI: 10.1049/iet-rpg.2009.0100.
13. Morren J., et al. Wind Turbines Emulating Inertia and Supporting Primary Frequency Control. – IEEE Transactions on Power Systems, 2006, vol. 21, No. 1, pp. 433–434, DOI: 10.1109/TPWRS.2005.861956.
14. Wang Z., Wu W. Coordinated Control Method for DFIG-Based Wind Farm to Provide Primary Frequency Regulation Service. – IEEE Transactions on Power Systems, 2018, vol. 33, No. 3, pp. 2644–2659, DOI: 10.1109/TPWRS.2017.2755685.
15. Nguyen H.T., et al. Frequency Stability Enhancement for Low Inertia Systems Using Synthetic Inertia of Wind Power. – IEEE Power and Energy Society General Meeting, 2017, DOI: 10.1109/PESGM.2017.8274566.
16. Meng J., et al. Adaptive Virtual Inertia Control of Distributed Generator for Dynamic Frequency Support in Microgrid. – IEEE Energy Conversion Congress and Exposition (ECCE), 2016, DOI: 10.1109/ECCE.2016.7854825.
17. Toulabi M., Dobakhshari A.S., Ranjbar A.M. An Adaptive Feedback Linearization Approach to Inertial Frequency Response of Windturbines. – IEEE Transactions on Sustainable Energy, 2017, vol. 8, No. 3, pp. 916–926.
18. Shi Q., Wang G., Ma W. Coordinated Virtual Inertia Control Strategy for D-PMSG Considering Frequency Regulation Ability. – Journal of Electrical Engineering and Technology, 2016, vol. 11, pp. 1921–1935, DOI:10.5370/jeet.2016.11.6.1556.
19. Hang Z.S., et al. Coordinated Frequency Regulation by Doubly Fed Induction Generator-Based Wind Power Plants. – IET Renewable Power Generation, 2012, vol. 6, pp. 38–47, DOI:10.1049/iet-rpg.2010.0208.
20. Hatziargyriou N., et al. Definition and Classification of Power System Stability – Revisited and Extended. – IEEE Transactions on Power Systems, 2021, vol. 36, No. 4, pp. 3271–3281. DOI: 10.1109/TPWRS.2020.3041774.
21. Yu M., et al. Adaptive control scheme based on transient stability mechanism for photovoltaic plants. – IET Renewable Power Generation, 2020, vol. 14, pp. 5011–5019, DOI: 10.1049/iet-gtd.2019.1686.
22. Leelaruji R., Bollen M. Synthetic Inertia to Improve Frequency Stability and How Often It Is Needed: Energiforsk AB Report. STRI AB, 2015, 68 p.
23. Chamorro H.R., et al. Innovative Primary Frequency Control in Low-Inertia Power Systems Based on Wide-Area RoCoF Sharing. – IET Energy Systems Integration, 2020, 2(2), DOI: 10.1049/iet-esi.2020.0001.
24. ENTSO-E. Rate of Change of Frequency (RoCoF) Withstand Capability ENTSO-E Guidance Document for National Implementation for Network Codes on Grid Connection; ENTSO-E: Brussels, Belgium, 2018.
25. National Grid ESO. Operability Strategy Report; National Grid ESO: Warwick, UK, 2019.
26. Evaluation Report on the Problem of ROCOF Measurement in the Context of Actual Use Cases and the ‘Wish List’ of Accuracy and Latency from an End-user Point of View [Electron. resource], URL: http://www.rocofmetrology.eu (Date of appeal 20.02.2022).
27. UK Distribution Code: DC0079 – Frequency Changes during Large Disturbances and Their Impact on the Total System [Electron. resource], URL: http://www.dcode.org.uk (Date of appeal 20.02.2022).
28. E NTSO-E. High Penetration of Power Electronic Interfaced Power Sources (HPoPEIPS). Guidance Document for National Implementation for Network Codes on Grid Connection. Tech. Rep, 2017, 37 p.
29. Rate of Change of Frequency (ROCOF) Review of TSO and Generator. Submissions Final Report, 2013, 40 p.
30. Duckwitz D., Fischer B. Modeling and Design of df/dt -Based Inertia Control for Power Converters. – IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, vol. 5, pp. 1553–1564, DOI: 10.1109/JESTPE.2017.2703814.
31. Díaz-González F., et al. Participation of Wind Power Plants in System Frequency Control: Review of Grid Code Requirements and Control Methods. – Renewable and Sustainable Energy Reviews, 2014, vol. 34, pp. 551–564, DOI: 10.1016/j.rser.2014.03.040.
32. Van de Vyver J., et al. Droop Control as an Alternative Inertial Response Strategy for the Synthetic Inertia on Wind Turbines. – IEEE Transactions on Power Systems, 2016, vol. 31, No. 2, pp. 1129–1138, DOI: 10.1109/TPWRS.2015.2417758.
33. Gonzalez-Longatt F.M. Impact of Emulated Inertia from Wind Power on Under-Frequency Protection Schemes of Future Power Systems. – Journal of Modern Power Systems and Clean Energy, 2016, vol. 4, No. 2, pp. 211–218, DOI: 10.1007/s40565-015-0143-x.
---
The research was carried out at the expense of the grant of the Russian Science Foundation No. MK-3249.2021.4
Опубликован
2022-04-22
Раздел
Статьи