Оптические методы исследования предпробивных явлений в жидких диэлектриках

  • Юлия Александровна Кузнецова
  • Владимир Борисович Ясинский
  • Сергей Миронович Коробейников
Ключевые слова: теневые методы, спектроскопия, электрооптика, стримеры

Аннотация

В статье дан обзор трёх основных групп неинвазивных экспериментальных методов (теневых, спектральных и электрооптических) исследования предпробивных процессов в жидких диэлектриках. Каждый из методов имеет свои возможности и позволяет получить ограниченный набор информации об исследуемом процессе. Скоростная съёмка даёт возможность зафиксировать возникающие объекты и проследить динамику происходящих в разрядном промежутке процессов. Теневые методы позволяют по регистрации изменения зондирующего излучения в реальном времени получать информацию о протекании тех процессов в жидкости, при которых происходит изменение показателя преломления. Однако оба названных способа не позволяют привязать полученные данные к электрическим характеристикам исследуемого объекта. Спектральные методы исследования дают возможность рассмотреть влияние высокого напряжения на физико-химические процессы, происходящие в разрядном промежутке. Для этого их целесообразно совмещать с методами скоростной съёмки, но малая интенсивность исследуемого излучения и высокая скорость протекания процессов сильно затрудняют использование таких способов. Если не затрагивать процессы, происходящие на молекулярном и атомарном уровнях, то электрооптический метод исследований является единственным методом, связывающим электрические параметры объекта исследования с получаемой оптической картиной процессов. Более того, с ростом напряжённости поля вследствие нелинейности эффекта Керра в электрооптической картине появляются дополнительные особенности, позволяющие заметить характерные процессы, предшествующие пробою. На примере электрооптического эффекта Керра в обзоре показано, как современные методы компьютерной обработки экспериментального материала позволяют получить недоступную ранее дополнительную информацию.

Биографии авторов

Юлия Александровна Кузнецова

старший преподаватель кафедры физики, факультет энергетики, автоматики и телекоммуникаций, Карагандинский технический университет, Караганда, Казахстан

Владимир Борисович Ясинский

кандидат физ.-мат. наук, доцент кафедры физики, факультет энергетики, автоматики и телекоммуникаций, Карагандинский технический университет, Караганда, Казахстан

Сергей Миронович Коробейников

доктор физ.-мат. наук, заведующий кафедрой безопасности труда, Новосибирский государственный технический университет, Новосибирск, Россия

Литература

1. Devins J., Rzad S., Schwabe R. Breakdown and Prebreakdown Phenomena in Liquids. – Journal of Applied Physics, 1981, vol. 52(7), pp. 4531–4545, DOI:10.1063/1.329327.
2. Климкин В.Ф. Многокадровая сверхскоростная лазерная шлирен-система для наблюдения предпробивных явлений в жидкостях в наносекундном диапазоне. – Журнал технической физики, 1991, т. 61. вып. 9, с. 15–19.
3. Lesaint O. “Streamers” in Liquids: Relation with Practical High Voltage Insulation and Testing of Liquids. –IEEE International Conference on Dielectric Liquids (ICDL), 2008, pp. 84–89, DOI:10.1109/ICDL.2008.4622543.
4. Clements J.S., Sato M., Davis R.H. Preliminary Investigation of Prebreakdown Phenomena and Chemical Reactions Using a Pulsed High-Voltage Discharge in Water. – IEEE Transactions on Industry Applications, 1987, vol. 23, pp. 224–235.
5. Sunka P., et al. Generation of Chemically Active Species by Electrical Discharges in Water. –Plasma Sources Science and Technology, 1999, vol. 8, pp. 258–265, DOI:10.1088/0963-0252/8/2/006.
6. Akiyama H. Streamer Discharges in Liquids and Their Applications. – IEEE Transactions on Dielectrics and Electrical Insulation, 2000, vol. 7(5), pp. 646–653, DOI:10.1109/94.879360.
7. Graham W.G., Stalder K.R. Plasmas in Liquids and Some of Their Applications in Nanoscience. – Journal of Physics D: Applied Physics, 2011, vol. 44(17), DOI:10.1088/0022-3727/44/17/174037.
8. Tobazeon R. Prebreakdown Phenomena in Dielectric Liquids. – IEEE Transactions on Dielectrics and Electrical Insulation, 1994, vol. 1, pp. 1132–1147.
9. Denat A. High Field Conduction and Prebreakdown Phenomena in Dielectric Liquids. – IEEE Transactions on Dielectrics and Electrical Insulation, 2006, vol. 13(3), pp. 518–525, DOI:10.1109/TDEI.2006.1657963.
10. Bruggeman P., Leys C. Non-Thermal Plasmas in and in Contact with Liquids. – Journal of Physics D: Applied Physics, 2009, vol. 45(2), p.053001, DOI:10.1088/0022-3727/42/5/053001.
11. Ushakov V.Y., et al. Impulse Breakdown of Liquids. Published by Springer, 2010, 397 p.
12. Климкин В.Ф. Механизмы электрического пробоя воды с острийного анода в наносекундном диапазоне. – Письма в Журнал технической физики, 1990, т. 16, вып. 4, с. 54–58.
13. Korobeynikov S.M. Bubble Model of Pulse Breakdown in Liquids. – 6-th International Conference on Dielectric Materials, Measurements and Applications, 1992, pp. 500–503.
14. Lehr J.M., et al. Measurement of the Electric Breakdown Strength of Transformer Oil in the Sub-Nanosecond Regime. – IEEE Transactions on Dielectrics and Electrical Insulation, 1998, vol. 5(6), pp. 857–861.
15. Starikovskiy A., et al. Non-equilibrium Plasma in Liquid Water: Dynamics of Generation and Quenching. – Plasma Sources Science and Technology, 2011, vol. 20(2), 024003, DOI:10.1088/0963-0252/20/2/024003.
16. Kao K.C., Higham J.B. The Effects of Hydrostatic Pressure, Temperature, and Voltage Duration on the Electric Strengths of Hydrocarbon Liquids. – Journal of The Electrochemical Society, 1961, vol. 108(6), pp.522–528.
17. Lesaint O., Gournay P. On the Gaseous Nature of Positive Filamentary Streamers in Hydrocarbon Liquids. I and II. – Journal of Physics D: Applied Physics, 1994, vol. 27(10), pp. 2111–2127.
18. Starikovskiy A. Pulsed Nanosecond Discharge Development in Liquids with Various Dielectric Permittivity Constants. – Plasma Sources Science and Technology, 2013, vol. 22(1), 012001, DOI:10. 1088/0963-0252/22/1/012001.
19. Ceccato P.H., et al. Time-Resolved Nanosecond Imaging of the Propagation of a Corona-Like Plasma Discharge in Water at Positive Applied Voltage Polarity. – Journal of Physics D: Applied Physics, 2010, vol. 43(17), pp. 175–202, DOI:10.1088/0022-3727/43/17/175202.
20. Seepersad Yо., et al. Investigation of Positive and Negative Modes of Nanosecond Pulsed Discharge in Water and Electrostriction Model of Initiation. – Journal of Physics D: Applied Physics, 2013, vol. 46(35), 355201, DOI:10.1088/0022-3727/46/35/355201.
21. Yassinskiy V, et al. Simulation of Electrooptical Measurements of Prebreakdown Electric Fields in Water. Part 1. Electric Field Near Anode Streamer. – IEEE Transactions on Plasma Science, 2022, vol.50, iss. 5, pp. 1262–1268, DOI: 10.1109/TPS.2022.3166595.
22. Panov V.A., et al. Pulsed Electrical Discharge in Conductive Solution. – Journal of Physics D: Applied Physics, 2016, vol. 49(38), 385202, DOI:10.1088/0022-3727/49/38/385202.
23. Adda P., et al. Observation and Modelling of Vapor Bubble and Streamer Initiation in Water under Long Duration Impulses. – IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 2016, pp. 416–419, DOI:10.1109/CEIDP.2016.7785552.
24. Traldi E., et al. Schlieren Imaging: A Powerful Tool for Atmospheric Plasma Diagnostic. – EPJ Techniques and Instrumentation, 2018, vol. 5(1), DOI:10.1140/epjti/s40485-018-0045-1.
25. Chadband W.G., Wright G.T. A Pre-breakdown Phenomenon in the Liquid Dielectric Hexane. – British Journal of Applied Physics, 1965, vol. 16(3), pp. 305–313.
26. Wong, P., Forster E.O. High-Speed Schlieren Studies of Electrical Breakdown in Liquid Hydrocarbons. – Canadian Journal of Chemistry, 1977, vol. 55(11), pp. 1890–1898, DOI:10.1139/v77-264.
27. Seepersad, Yo., et al. Investigation of Positive and Negative Modes of Nanosecond Pulsed Discharge in Water and Electrostriction Model of Initiation. – Journal of Physics D: Applied Physics, 2013, vol. 46(35), DOI:10.1088/0022-3727/46/35/355201.
28. Seepersad Y., Fridman A., Dobrynin D. Anode Initiated Impulse Breakdown in Water: The Dependence on Pulse Rise Time for Nanosecond and Sub-nanosecond Pulses and Initiation Mechanism Based on Electrostriction. – Journal of Physics D: Applied Physics, 2015, vol. 48(42), DOI:10.1088/0022-3727/48/42/424012.
29. Gherardi M., et al. Practical and Theoretical Considerations on the Use of ICCD Imaging for the Characterization of Non-equilibrium Plasmas. – Plasma Sources Science and Technology, 2015, vol. 24(6), 064004.
30. Hoder T., et al. Barrier Discharges Driven by Sub-microsecond Pulses at Atmospheric Pressure: Breakdown Manipula-tion by Pulse Width. – Physics of Plasmas, 2012, vol. 19(7), 070701, DOI: 10.1063/1.4736716.
31. Denat A. High Field Conduction and Pre-breakdown Phenomena in Dielectric Liquids. – IEEE Transactions on Dielectrics and Electrical Insulation, 2006, vol. 13(3), pp. 518–525, DOI:10.1109/TDEI.2006.1657963.
32. Salazar J.N., et al. Characterization and Spectroscopic Study of Positive Streamers in Water. – IEEE International Conference on Dielectric Liquids (ICDL), 2005, DOI:10.1109/ICDL.2005.1490034.
33. Korobeynikov S.M., Melekhov A.V. Estimations of the Electric Field Strength of Nonelectrode Streamers in Water. – High Temperature, 2014, vol. 52, No. 3, pp. 129–133, DOI:10.1134/S0018151X14010118.
34. Frayssines P.E., et al. Streamers in Liquid Nitrogen: Characterization and Spectroscopic Determination of Gaseous Filament Temperature and Electron Density. – Journal of Physics D: Applied Physics, 2002, vol. 35(4), pp. 369–377, DOI:10.1088/0022-3727/35/4/313.
35. Frayssines P.E., et al. Spectroscopic Investigation of Positive Filamentary Streamers in Liquid Nitrogen. – Proceedings of 17th Escampig. Constanta, Romania, 2004, pp. 181–183.
36. Salazar J.N., et al. Characterization and Spectroscopic Study of Positive Streamers in Water. – IEEE International Conference on Dielectric Liquids (ICDL), 2005, pp. 89–92, DOI:10.1109/ICDL.2005.1490034.
37. Bårmann P., Kröll S., Sunesson A. Spectroscopic Measurements of Streamer Filaments in Electric Breakdown in a Dielectric Liquid. – Journal of Physics D: Applied Physics, 1996, vol. 29(5), pp. 1188–1196, DOI:10.1088/0022-3727/29/5/012.
38. Tachibana K., et al. Analysis of a Pulsed Discharge within Single Bubbles in Water under Synchronized Conditions. – Plasma Sources Science and Technology, 2011, vol. 20(3), 034005.
39. Shneider M. N., Pekker M. Pre-breakdown Processes in a Dielectric Fluid in Inhomogeneous Pulsed Electric Fields. – Journal of Applied Physics, 2015, vol. 117(22), 224902, DOI:10.1063/1.4922244.
40. Коробейников С.М. Электрострикционные волны в неоднородных полях. Информэлектро, 1979, № 5 (91), рег. № 6-д79, 8 с.
41. Pekker M., Shneider M.N. Initial Stage of Cavitation in Liquids and Its Observation by Rayleigh Scattering. – Fluid Dynamics Research, 2017, vol. 49(3), 035503.
42. Shneider M.N., and Pekker M. Rayleigh Scattering on the Cavitation Region Emerging in Liquids. – Optics Letters, 2016, vol. 41(6), DOI:10.1364/OL.41.001090.
43. Бесов А.С., Кедринский В.К., Пальчиков Е.И. Изучение начальной стадии кавитации с помощью дифракционной оптической методики. – Письма в Журнал технической физики, 1984, т. 10 (4), с. 240–244.
44. Бесов А.С., Keдринский В.K. Оптические исследования микропузырьков в воде. – Журнал технической физики, 1989, т. 60, с. 67–73.
45. Комин С.И., Кучинский Г.С., Морозов Е.А. Исследование влияния различных веществ на электрическую прочность воды в микросекундном диапазоне. – Электричество, 1987, № 12, с. 13–17.
46. Kovalchuk T., et al. Laser Breakdown in Alcohols and Water Induced by λ=1064 nm Nanosecond Pulses. – Chemical Physics Letters, 2010, vol. 500(4-6), pp. 242–250.
47. Ерин К.В. Электро- и магнитооптические измерения напряжённости электрического поля в магнитных коллоидах на основе жидких диэлектриков. – Оптика и спектроскопия, 2011, т. 111, № 1, с. 86–91.
48. Ерин К.В. Электрооптический эффект в магнитном коллоиде вблизи поверхности электрода. – Наука. Инновации. Технологии, 2013, № 2, с. 27–34.
49. Ustundag A., Zahn M. Comparative Study of Theoretical Kerr Electro-Optic Fringe Patterns in 2-D and Axisymmetric Electrode Geometries. – IEEE Transactions on Dielectrics and Electrical Insulation, 2001, vol. 8(1), pp.15–25.
50. Ustundag A., Gung T.J., Zahn M. Kerr Electro-Optic Theory and Measurements of Electric Fields with Magnitude and Direction Varying Along the Light Path. – IEEE Transactions on Dielectrics and Electrical Insulation, 1998, vol. 5, pp. 421–442.
51. Zahn M. Electro-Optic Field and Space Charge Mapping Measurements in Gaseous, Liquid, and Solid Dielectrics. – Interdisciplinary Conference on Dielectrics: Properties, Characterization, Applications, 1992, pp. 130–139.
52. Овчинников, И.Т., Яншин К.В., Яншин Э.В. Экспериментальные исследования импульсных электрических полей в воде вблизи острийного электрода с помощью эффекта Керра. – Журнал технической физики, 1978, т. 48, № 2, с. 2596–2598.
53. Korobeynikov S.M., Kuznetsova Yu.A., Yassinskiy V.B. Simulation of Electrooptical Experiments in Liquids. – Journal of Electrostatics, 2020,vol. 106, DOI: 10.1016/j.elstat.2020.103452.
54. Korobeynikov S.M., Kuznetsova Yu.A., Yassinskiy V.B. Simulation and Analysis of Prebreakdown Processes in Liquids. – XI International Symposium on Electrohydrodynamics (ISEIID 2019), 2019, Saint Petersburg, Russia, pp. 254–256
---
Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (НИЛ «Моделирование и обработка данных высоких технологий», код проекта ФСАН-2020-0012)
#
1. Devins J., Rzad S., Schwabe R. Breakdown and Prebreakdown Phenomena in Liquids. – Journal of Applied Physics, 1981, vol. 52(7), pp. 4531–4545, DOI:10.1063/1.329327.
2. Klimkin V.F. Zhurnal tekhnicheskoy fiziki – in Russ. (Journal of Technical Physics), 1991, vol. 61. iss. 9, pp. 15–19.
3. Lesaint O. “Streamers” in Liquids: Relation with Practical High Voltage Insulation and Testing of Liquids. – IEEE International Conference on Dielectric Liquids (ICDL), 2008, pp. 84–89, DOI: 10.1109/ICDL.2008.4622543.
4. Clements J.S., Sato M., Davis R.H. Preliminary Investigation of Prebreakdown Phenomena and Chemical Reactions Using a Pulsed High-Voltage Discharge in Water. – IEEE Transactions on Industry Applications, 1987, vol. 23, pp. 224–235.
5. Sunka P., et al. Generation of Chemically Active Species by Electrical Discharges in Water. –Plasma Sources Science and Technology, 1999, vol. 8, pp. 258–265, DOI:10.1088/0963-0252/8/2/006.
6. Akiyama H. Streamer Discharges in Liquids and Their Applications. – IEEE Transactions on Dielectrics and Electrical Insulation, 2000, vol. 7(5), pp. 646–653, DOI:10.1109/94.879360.
7. Graham W.G., Stalder K.R. Plasmas in Liquids and Some of Their Applications in Nanoscience. – Journal of Physics D: Applied Physics, 2011, vol. 44(17), DOI:10.1088/0022-3727/44/17/174037.
8. Tobazeon R. Prebreakdown Phenomena in Dielectric Liquids. – IEEE Transactions on Dielectrics and Electrical Insulation, 1994, vol. 1, pp. 1132–1147.
9. Denat A. High Field Conduction and Prebreakdown Phenomena in Dielectric Liquids. – IEEE Transactions on Dielectrics and Electrical Insulation, 2006, vol. 13(3), pp. 518–525, DOI:10.1109/TDEI.2006.1657963.
10. Bruggeman P., Leys C. Non-Thermal Plasmas in and in Contact with Liquids. – Journal of Physics D: Applied Physics, 2009, vol. 45(2), p. 053001, DOI:10.1088/0022-3727/42/5/053001.
11. Ushakov V.Y., et al/ Impulse Breakdown of Liquids. Published by Springer, 2010, 397 p.
12. Klimkin V.F. Pis'ma v Zhurnal tekhnicheskoy fiziki – in Russ. (Letters to the Journal of Technical Physics), 1990, vol. 16, iss. 4, pp. 54–58.
13. Korobeynikov S.M. Bubble Model of Pulse Breakdown in Liquids. – 6-th International Conference on Dielectric Materials, Measurements and Applications, 1992, pp. 500–503.
14. Lehr J.M., et al. Measurement of the Electric Breakdown Strength of Transformer Oil in the Sub-Nanosecond Regime. – IEEE Transactions on Dielectrics and Electrical Insulation, 1998, vol. 5(6), pp. 857–861.
15. Starikovskiy A., et al. Non-equilibrium Plasma in Liquid Water: Dynamics of Generation and Quenching. – Plasma Sources Science and Technology, 2011, vol. 20(2), 024003, DOI:10.1088/0963-0252/20/2/024003.
16. Kao K.C., Higham J.B. The Effects of Hydrostatic Pressure, Temperature, and Voltage Duration on the Electric Strengths of Hydrocarbon Liquids. – Journal of The Electrochemical Society, 1961, vol. 108(6), pp.522–528.
17. Lesaint O., Gournay P. On the Gaseous Nature of Positive Filamentary Streamers in Hydrocarbon Liquids. I and II. – Journal of Physics D: Applied Physics, 1994, vol. 27(10), pp. 2111–2127.
18. Starikovskiy A. Pulsed Nanosecond Discharge Development in Liquids with Various Dielectric Permittivity Constants. – Plasma Sources Science and Technology, 2013, vol. 22(1), 012001, DOI:10. 1088/0963-0252/22/1/012001.
19. Ceccato P.H., et al. Time-Resolved Nanosecond Imaging of the Propagation of a Corona-Like Plasma Discharge in Water at Positive Applied Voltage Polarity. – Journal of Physics D: Applied Physics, 2010, vol. 43(17), pp. 175–202, DOI:10.1088/0022-3727/43/17/175202.
20. Seepersad Yо., et al. Investigation of Positive and Negative Modes of Nanosecond Pulsed Discharge in Water and Electrostriction Model of Initiation. – Journal of Physics D: Applied Physics, 2013, vol. 46(35), 355201, DOI:10.1088/0022-3727/46/35/355201.
21. Yassinskiy V, et al. Simulation of Electrooptical Measurements of Prebreakdown Electric Fields in Water. Part 1. Electric Field Near Anode Streamer. – IEEE Transactions on Plasma Science, 2022, vol.50, iss. 5, pp. 1262–1268, DOI: 10.1109/TPS.2022.3166595.
22. Panov V.A., et al. Pulsed Electrical Discharge in Conductive Solution. – Journal of Physics D: Applied Physics, 2016, vol. 49(38), 385202, DOI:10.1088/0022-3727/49/38/385202.
23. Adda P., et al. Observation and Modelling of Vapor Bubble and Streamer Initiation in Water under Long Duration Impulses. – IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 2016, pp. 416–419, DOI:10.1109/CEIDP.2016.7785552.
24. Traldi E., et al. Schlieren Imaging: A Powerful Tool for Atmospheric Plasma Diagnostic. – EPJ Techniques and Instrumentation, 2018, vol. 5(1), DOI:10.1140/epjti/s40485-018-0045-1.
25. Chadband W.G., Wright G.T. A Pre-breakdown Phenomenon in the Liquid Dielectric Hexane. – British Journal of Applied Physics, 1965, vol. 16(3), pp. 305–313.
26. Wong, P., Forster E.O. High-Speed Schlieren Studies of Electrical Breakdown in Liquid Hydrocarbons. – Canadian Journal of Chemistry, 1977, vol. 55(11), pp. 1890–1898, DOI:10.1139/v77-264.
27. Seepersad, Yo., et al. Investigation of Positive and Negative Modes of Nanosecond Pulsed Discharge in Water and Electrostriction Model of Initiation. – Journal of Physics D: Applied Physics, 2013, vol. 46(35), DOI:10.1088/0022-3727/46/35/355201.
28. Seepersad Y., Fridman A., Dobrynin D. Anode Initiated Impulse Breakdown in Water: The Dependence on Pulse Rise Time for Nanosecond and Sub-nanosecond Pulses and Initiation Mechanism Based on Electrostriction. – Journal of Physics D: Applied Physics, 2015, vol. 48(42), DOI:10.1088/0022-3727/48/42/424012.
29. Gherardi M., et al. Practical and Theoretical Considerations on the Use of ICCD Imaging for the Characterization of Non-equilibrium Plasmas. – Plasma Sources Science and Technology, 2015, vol. 24(6), 064004.
30. Hoder T., et al. Barrier Discharges Driven by Sub-microsecond Pulses at Atmospheric Pressure: Breakdown Manipulation by Pulse Width. – Physics of Plasmas, 2012, vol. 19(7), 070701, DOI: 10.1063/1.4736716.
31. Denat A. High Field Conduction and Pre-breakdown Phenomena in Dielectric Liquids. – IEEE Transactions on Dielectrics and Electrical Insulation, 2006, vol. 13(3), pp. 518–525, DOI:10.1109/TDEI.2006.1657963.
32. Salazar J.N., et al. Characterization and Spectroscopic Study of Positive Streamers in Water. – IEEE International Conference on Dielectric Liquids (ICDL), 2005, DOI:10.1109/ICDL.2005.1490034.
33. Korobeynikov S.M., Melekhov A.V. Estimations of the Electric Field Strength of Nonelectrode Streamers in Water. – High Temperature, 2014, vol. 52, No. 3, pp. 129–133, DOI:10.1134/S0018151X14010118.
34. Frayssines P.E., et al. Streamers in Liquid Nitrogen: Characterization and Spectroscopic Determination of Gaseous Filament Temperature and Electron Density. – Journal of Physics D: Applied Physics, 2002, vol. 35(4), pp. 369–377, DOI:10.1088/0022-3727/35/4/313.
35. Frayssines P.E., et al. Spectroscopic Investigation of Positive Filamentary Streamers in Liquid Nitrogen. – Proceedings of 17th Escampig. Constanta, Romania, 2004, pp. 181–183.
36. Salazar J.N., et al. Characterization and Spectroscopic Study of Positive Streamers in Water. – IEEE International Conference on Dielectric Liquids (ICDL), 2005, pp. 89–92, DOI:10.1109/ICDL.2005.1490034.
37. Bårmann P., Kröll S., Sunesson A. Spectroscopic Measurements of Streamer Filaments in Electric Breakdown in a Dielectric Liquid. – Journal of Physics D: Applied Physics, 1996, vol. 29(5), pp. 1188–1196, DOI:10.1088/0022-3727/29/5/012.
38. Tachibana K., et al. Analysis of a Pulsed Discharge within Single Bubbles in Water under Synchronized Conditions. – Plasma Sources Science and Technology, 2011, vol. 20(3), 034005.
39. Shneider M. N., Pekker M. Pre-breakdown Processes in a Dielectric Fluid in Inhomogeneous Pulsed Electric Fields. – Journal of Applied Physics, 2015, vol. 117(22), 224902, DOI:10.1063/1.4922244.
40. Korobeynikov S.M. Informelektro – in Russ. (Informelectro), 1979, No. 5 (91), reg.No 6-d79, 8 с.
41. Pekker M., Shneider M.N. Initial Stage of Cavitation in Liquids and Its Observation by Rayleigh Scattering. – Fluid Dynamics Research, 2017, vol. 49(3), 035503.
42. Shneider M.N., and Pekker M. Rayleigh Scattering on the Cavitation Region Emerging in Liquids. – Optics Letters, 2016, vol. 41(6), DOI:10.1364/OL.41.001090.
43. Besov A.S., Kedrinskiy V.K., Pal'chikov E.I. Pis'ma v Zhurnal tekhnicheskoy fiziki – in Russ. (Letters to the Journal of Technical Physics), 1984, vol. 10 (4), pp. 240–244.
44. Besov A.S., Kedrinskiy V.K. Zhurnal tekhnicheskoy fiziki – in Russ. (Journal of Technical Physics), 1989, vol. 60, pp. 67–73.
45. Komin S.I., Kuchinskiy G.S., Morozov E.A. Elektrichestvo – in Russ. (Electricity), 1987, No. 12, pp. 13–17.
46. Kovalchuk T., et al. Laser Breakdown in Alcohols and Water Induced by λ=1064 nm Nanosecond Pulses. – Chemical Physics Letters, 2010, vol. 500(4-6), pp. 242–250.
47. Erin K.V. Optika i spektroskopiya – in Russ. (Optics and spectroscopy), 2011, vol. 111, No. 1, pp. 86–91.
48. Erin K.V. Nauka. Innovatsii. Tekhnologii – in Russ. (The Science. Innovation. Technologies), 2013, No. 2, pp. 27–34.
49. Ustundag A., Zahn M. Comparative Study of Theoretical Kerr Electro-Optic Fringe Patterns in 2-D and Axisymmetric Electrode Geometries. – IEEE Transactions on Dielectrics and Electrical Insulation, 2001, vol. 8(1), pp.15–25.
50. Ustundag A., Gung T.J., Zahn M. Kerr Electro-Optic Theory and Measurements of Electric Fields with Magnitude and Direction Varying Along the Light Path. – IEEE Transactions on Dielectrics and Electrical Insulation, 1998, vol. 5, pp. 421–442.
51. Zahn M. Electro-Optic Field and Space Charge Mapping Measurements in Gaseous, Liquid, and Solid Dielectrics. – Interdisciplinary Conference on Dielectrics: Properties, Characterization, Applications, 1992, pp. 130–139.
52. Ovchinnikov, I.T., Yanshin K.V., Yanshin E.V. Zhurnal tekhnicheskoy fiziki – in Russ. (Journal of Technical Physics), 1978, т. 48, № 2, с. 2596–2598.
53. Korobeynikov S.M., Kuznetsova Yu.A., Yassinskiy V.B. Simulation of Electrooptical Experiments in Liquids. – Journal of Electrostatics, 2020, vol. 106, DOI: 10.1016/j.elstat.2020.103452.
54. Korobeynikov S.M., Kuznetsova Yu.A., Yassinskiy V.B. Simulation and Analysis of Prebreakdown Processes in Liquids. – XI International Symposium on Electrohydrodynamics (ISEIID 2019), 2019, Saint Petersburg, Russia, pp. 254–256
---
The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Research Laboratory "Modeling and data processing of high technologies", the project code is FSUN-2020-0012)
Опубликован
2022-10-27
Раздел
Статьи