Разработка лампового генератора мощностью 1 МВт и частотой 0,44 МГц для питания ВЧИ-плазмотрона
Аннотация
Статья посвящена продолжению исследований, в которых была разработана модель одноконтурного лампового генератора мощностью 1 МВт и частотой 0,44 МГц с самовозбуждением на базе генераторной лампы ГУ-98А для питания высокочастотного индукционного (ВЧИ) плазмотрона. Для уточнения параметров нагрузки генератора в программе COMSOL Multiphysics проведена серия расчетов процессов в ВЧИ-плазмотроне в различных режимах его работы. Полученные значения активного и индуктивного сопротивлений индуктора с плазмой были использованы в MATLAB Simulink-модели лампового генератора. Расчеты показали, что в случае, когда схемой генератора предусмотрена одна лампа и генератор работает в номинальном режиме (при мощности 1 МВт), генераторная лампа ГУ-98А используется в предельно допустимом режиме. Для увеличения срока службы генераторной лампы принято решение модифицировать схему и использовать параллельно две генераторные лампы. Представлены MATLAB Simulink-модели одноконтурного и трехконтурного мощного высокочастотного лампового генератора с самовозбуждением и с параллельной работой двух генераторных ламп. Для дальнейших расчетов принята трехконтурная схема генератора, позволяющая более гибко регулировать мощность. В статье представлены результаты расчетов по разработанной модели.
Литература
2. Васильев А.С. Ламповые генераторы для высокочастотного нагрева. Л.: Машиностроение, 1990, 80 с.
3. Васильев А.С., Конрад Г., Дзлиев С.В. Источники питания высокочастотных электротермических установок. Новосибирск: Изд-во НГТУ, 2006, 426 с.
4. Boulos M.I., Fauchais P.L., Pfender E. Handbook of Thermal Plasmas. Springer International Publishing, 2023, 1973 p.
5. Фарнасов Г.А., Лисафин А.Б. Особенности выбора рациональных режимов работы высокочастотной плазменной установки. – Электрометаллургия, 2015, № 2, с. 21–24.
6. Горбаненко В.М., Фарнасов Г.А., Лисафин А.Б. Исследование теплоэнергетических режимов работы высокочастотного индукционного плазмотрона мощностью 1000 кВт / 0,44 МГц. – Электрометаллургия, 2015, № 7, с. 12–19.
7. Murashov I. et al. Development of Digital Twin of High Frequency Generator with Self-Excitation in Simulink. – IOP Conference Series Materials Science and Engineering, 2019, vol. 643 (1), DOI:10.1088/1757-899X/643/1/012078.
8. Образцов Н.В. и др. Численное моделирование высокочастотного плазмотрона и высокочастотного генератора с учетом их взаимного влияния. – Электричество, 2023, № 3, с. 52–61.
9. Дресвин С.В. и др. ВЧ- и СВЧ-плазмотроны. Новосибирск: Наука, 1990, 319 с.
10. Merkhouf A., Boulos M. Integrated Model for the Radio Frequency Induction Plasma Torch and Power Supply System. – Plasma Sources Science and Technology, 1998, vol. 7, pp. 599– 606, DOI:10.1088/0963-0252/7/4/017.
11. Frolov V.Y. et al. Development of a 1 MW, 0.44 MHz High Frequency Power Supply for Industrial Applications. – IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2021, c. 878–881, DOI:10.1109/ElConRus51938.2021.9396147.
12. Xue S., Proulx P., Boulos M.I. Effect of the coil angle in an inductively coupled plasma torch: a novel two-dimensional model. – Plasma Chemistry and Plasma Processing, 2003, vol. 23, No. 2, pp. 245–263.
13. Bernardi D. et al. Comparison of Different Techniques for the FLUENT©-Based Treatment of the Electromagnetic Field in Inductively Coupled Plasma Torches. – The European Physical Journal D, 2003, vol. 27(1), pp. 55–72, DOI:10.1140/epjd/e2003-00227-1.
14. Tanaka Y. Two-Temperature Chemically Non-Equilibrium Modelling of High-Power Ar–N2 Inductively Coupled Plasmas at Atmospheric Pressure. – Journal of Physics D: Applied Physics, 2004, vol. 37, pp. 1190–1205, DOI:10.1088/0022-3727/37/8/007.
15. Siregar J. et al. Influence of Sheath Gas Flow Rate in Ar Induction Thermal Plasma with Ti Powder Injection on the Plasma Temperature by Numerical Calculation. – MATEC Web Conferences. 2018, DOI:10.1051/matecconf/201821804030.
16. Shigeta M. Time-Dependent 3D Simulation of an Argon RF Inductively Coupled Thermal Plasma. – Plasma Sources Science and Technology, 2012, vol. 21(5), DOI:10.1088/0963-0252/21/5/055029.
17. Шабарова Л.В. и др. Сравнительное изучение газодинамических процессов в аргоно-водородной индуктивно-связанной плазме, содержащей BCL3 и BF3. – Химия высоких энергий, 2019, т. 53, № 2, c. 148– 154.
18. Шабарова Л.В. и др. Моделирование термогазодинамических процессов при получении кремния из его галогенидов. – Теоретические основы химической технологии, 2020, т. 54, № 4, с. 504– 513.
19. Furukawa R. et al. Comparative Study of Influence of Simultaneous Modulation of Upper-Coil and Lower-Coil Currents on Silicon Nanoparticles Synthesized Using Tandem-Type Modulated Induction Thermal Plasmas. – Plasma Chemistry and Plasma Processing, 2022, vol. 42 (3), pp. 435–463, DOI:10.1007/s11090-022-10230-w.
20. Ivanov D.V., Zverev S.G. Mathematical Simulation of Plasma Processes in a Radio Frequency Inductively Coupled Plasma Torch in ANSYS Fluent and COMSOL Multiphysics Software Packages. – IEEE Transactions on Plasma Science, 2022, vol. 50, No. 6, pp. 1700– 1709, DOI:10.1109/TPS.2022.3175741.
21. Dresvin S. et al. High Frequency Induction Plasma Torches. – Plasma Assisted Combustion, Gasification, and Pollution Control: Vol. I. Methods of Plasma Generation for Pac Hardcover. Outskirts Press, 2013, pp. 373–462.
22. Энгельшт В.С. и др. Теория столба электрической дуги. Новосибирск: Наука, 1990, 373 с.
23. Frolov V.Y., Ivanov D.V. Calculation of a Plasma Composition and Its Thermophysical Properties in Cases of Maintaining or Quenching of Electric Arcs. – Journal of Physics: Conference Series, 2018, vol. 1058, DOI:10.1088/1742-6596/1058/1/012040.
24. COMSOL Multiphysics. [Электрон. ресурс], URL: http://www.comsol.com (дата обращения 08.02.2023).
25. Дресвин С.В. и др. Физика и техника низкотемпературной плазмы. М.: Атомиздат, 1972, 352 с.
---
Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации FSEG-2023-0012.
#
1. Donskoy A.V., Ramm G.S., Vigdorovich Yu.B. Vysokochastotnye elektrotermicheskie ustanovki s lampovymi generatorami (High-Frequency Electrothermal Installations with Vacuum Tube Generators). L.: Energiya, 1974, 208 p.
2. Vasil'ev A.S. Lampovye generatory dlya vysokochastotnogo nagreva (Lamp Generators for High-Frequency Heating). L.: Mashinostroenie, 1990, 80 p.
3. Vasil'ev A.S., Konrad G., Dzliev S.V. Istochniki pitaniya vysokochastotnyh elektrotermicheskih ustanovok (Power Sources of High-Frequency Electrothermal Installations). Novosibirsk: Izd-vo NGTU, 2006, 426 p.
4. Boulos M.I., Fauchais P.L., Pfender E. Handbook of Thermal Plasmas. Springer International Publishing, 2023, 1973 p.
5. Farnasov G.A., Lisafin A.B. Elektrometallurgiya – in Russ. (Electrometallurgy), 2015, No. 2, pp. 21–24.
6. Gorbanenko V.M., Farnasov G.A., Lisafin A.B. Elektrometallurgiya – in Russ. (Electrometallurgy), 2015, No. 7, pp. 12–19.
7. Murashov I. et al. Development of Digital Twin of High Frequency Generator with Self-Excitation in Simulink. – IOP Conference Series Materials Science and Engineering, 2019, vol. 643 (1), DOI:10.1088/1757-899X/643/1/012078.
8. Obraztsov N.V. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 3, pp. 52–61.
9. Dresvin S.V. et al. VCH- i SVCH-plazmotrony (RF and Microwave Plasma Torches). Novosibirsk: Nauka, 1990, 319 p.
10. Merkhouf A., Boulos M. Integrated Model for the Radio Frequency Induction Plasma Torch and Power Supply System. – Plasma Sources Science and Technology, 1998, vol. 7, pp. 599– 606, DOI:10.1088/0963-0252/7/4/017.
11. Frolov V.Y. et al. Development of a 1 MW, 0.44 MHz High Frequency Power Supply for Industrial Applications. – IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2021, c. 878–881, DOI:10.1109/ElConRus51938.2021.9396147.
12. Xue S., Proulx P., Boulos M.I. Effect of the coil angle in an inductively coupled plasma torch: a novel two-dimensional model. – Plasma Chemistry and Plasma Processing, 2003, vol. 23, No. 2, pp. 245–263.
13. Bernardi D. et al. Comparison of Different Techniques for the FLUENT©-Based Treatment of the Electromagnetic Field in Inductively Coupled Plasma Torches. – The European Physical Journal D, 2003, vol. 27(1), pp. 55–72, DOI:10.1140/epjd/e2003-00227-1.
14. Tanaka Y. Two-Temperature Chemically Non-Equilibrium Modelling of High-Power Ar–N2 Inductively Coupled Plasmas at Atmospheric Pressure. – Journal of Physics D: Applied Physics, 2004, vol. 37, pp. 1190–1205, DOI:10.1088/0022-3727/37/8/007.
15. Siregar J. et al. Influence of Sheath Gas Flow Rate in Ar Induction Thermal Plasma with Ti Powder Injection on the Plasma Temperature by Numerical Calculation. – MATEC Web Conferences. 2018, DOI:10.1051/matecconf/201821804030.
16. Shigeta M. Time-Dependent 3D Simulation of an Argon RF Inductively Coupled Thermal Plasma. – Plasma Sources Science and Technology, 2012, vol. 21(5), DOI:10.1088/0963-0252/21/5/055029.
17. Shabarova L.V. et al. Himiya vysokih energiy – in Russ. (High Energy Chemistry), 2019, vol. 53, No. 2, pp. 148– 154.
18. Shabarova L.V. et al. Teoreticheskie osnovy himicheskoy tekhnologii – in Russ. (Theoretical Foundations of Chemical Engineering), 2020, vol. 54, No. 4, pp. 504– 513.
19. Furukawa R. et al. Comparative Study of Influence of Simultaneous Modulation of Upper-Coil and Lower-Coil Currents on Silicon Nanoparticles Synthesized Using Tandem-Type Modulated Induction Thermal Plasmas. – Plasma Chemistry and Plasma Processing, 2022, vol. 42 (3), pp. 435–463, DOI:10.1007/s11090-022-10230-w.
20. Ivanov D.V., Zverev S.G. Mathematical Simulation of Plasma Processes in a Radio Frequency Inductively Coupled Plasma Torch in ANSYS Fluent and COMSOL Multiphysics Software Packages. – IEEE Transactions on Plasma Science, 2022, vol. 50, No. 6, pp. 1700– 1709, DOI:10.1109/TPS.2022.3175741.
21. Dresvin S. et al. High Frequency Induction Plasma Torches. – Plasma Assisted Combustion, Gasification, and Pollution Control: Vol. I. Methods of Plasma Generation for Pac Hardcover. Outskirts Press, 2013, pp. 373–462.
22. Engel'sht V.S. et al. Teoriya stolba elektricheskoy dugi (The Theory of the Electric Arc Column). Novosibirsk: Nauka, 1990, 373 p.
23. Frolov V.Y., Ivanov D.V. Calculation of a Plasma Composition and Its Thermophysical Properties in Cases of Maintaining or Quenching of Electric Arcs. – Journal of Physics: Conference Series, 2018, vol. 1058, DOI:10.1088/1742-6596/1058/1/012040.
24. COMSOL Multiphysics. [Электрон. ресурс], URL: http://www.comsol.com (дата обращения 08.02.2023).
25. Dresvin S.V. et al. Fizika i tekhnika nizkotemperaturnoy plazmy (Physics and Technology of Low-Temperature Plasmas). М.: Atomizdat, 1972, 352 p.
---
The study was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation FSEG-2023-0012