Закрепление потока в сильных магнитных полях в проводниках с покрытием REBa2Cu3O7-x
Аннотация
REBa2Cu3O7-x (REBCO) – основа высокотемпературных сверхпроводящих лент второго поколения – отличается прекрасными характеристиками, такими как высокое необратимое поле (7 Т) и высокая пропускная способность по току (77 К, 106 А/см2). REBCO рассматривается как потенциальный выбор для применения в условиях сильных магнитных полей (ускорители, магнитно-резонансная томография (МРТ)). В последние годы была разработана тонкопленочная технология эпитаксии и двухосных текстур на основе гибких подложек, которая может помочь преодолеть слабое соединение границ зерен и плохие механические свойства REBCO. Однако серьезной проблемой остается ухудшение критической плотности тока Jc в этих пленках из-за вихревого движения в их магнитном поле. Установлено, что закрепление потока в проводниках с покрытием REBCO может улучшить критическую плотность тока при высоких магнитных полях, что означает благоприятные условия для применения REBCO в будущем. В статье кратко описывается механизм, вводные методы и изменчивость закрепления магнитного потока в зависимости от условий окружающей среды. Описан процесс закрепления проводников с покрытием REBCO потоком при высоких магнитных полях. Проведен анализ идеальной структуры закрепления магнитного потока проводников с покрытием REBCO в сильном магнитном поле.
Литература
2. Bednorz J.G., Muller K.A. Possible High-Tc Superconductivity in the Ba-La-Cu-O System. – Zeitschrift Fur Physik B-Condensed Matter, 1986, 64(2), pp. 189–193.
3. Maeda H. et al. A New High-Tc Oxide Superconductor without a Rare-Earth Element. – Japanese Journal of Applied Physics, 1988, 27 (Part 2, No.2), pp. L209–L210, DOI:10.1143/jjap.27.l209.
4. Macmanus-Driscoll J.L., Wimbush S.C. Processing and Ap-pli-cation of High-Temperature Superconducting Coated Conductors. – Nature Reviews Materials, 2021, 6(7), pp. 587–604, DOI:10.1038/s41578-021-00290-3.
5. Nagamatsu J. et al. Superconductivity at 39 K in Magnesium Diboride. – Nature, 2001, 410(6824), pp. 63–64, DOI:10.1038/35065039.
6. Kamihara Y. et al. Iron-Based Layered Superconductor La O1-xFxFeAs (x = 0.05–0.12) with Tc = 26 K. – Journal of the Ameri-can Chemical Society, 2008, 130(11), pp. 3296–3297, DOI:10.1021/ja800073m.
7. Wen H.H. et al. Superconductivity at 25K in Hole-Doped (La(1-x)Sr4(x))OFeAs. – EPL (Europhysics Letters), 2008, 82(1), DOI:10.1209/0295-5075/82/17009.
8. Yao C., Ma Y. Superconducting Materials: Challenges and Opportunities for Large-Scale Applications. – iScience, 2021, 24(6): 102541, DOI:10.1016/j.isci.2021.102541.
9. Hilgenkamp H., Mannhart J. Grain Boundaries in High-T-c Superconductors. – Review of Modern Physics, 2002, 74(2), pp. 485–549, DOI:10.1103/RevModPhys.74.485.
10. Goyal A. et al. Epitaxial Superconductors on Rolling-Assisted Biaxially-Textured Substrates (RABiTS): A Route Towards High Critical Current Density Wire. – Applied Superconductivity, 1996, 4(10-11), pp. 403–427, DOI:10.1016/S0964-1807(97)00029-X.
11. Goyal A. et al. Recent Progress in the Fabrication of High-J(c) Tapes by Epitaxial Deposition of YBCO on RABiTS. – Physica C, 2001, vol. 357, pp. 903–913.
12. Rupich M.W. et al. YBCO Coated Conductors by an MOD/RABiTS (TM) Process. – Transactions on Applied Superconductivity, 2003, 13(2), pp. 2458–2461, DOI:10.1109/TASC.2003.811820.
13. Goyal A., Paranthaman M.P., Schoop U. The RABiTS Approach: Using Rolling-Assisted Biaxially Textured Substrates for High-Performance YBCO Superconductors. – MRS Bulletin, 2004, 29(08), pp. 552–561, DOI:10.1557/mrs2004.161.
14. Wu X.D. et al. High-Current YBa2Cu3O7-Delta Thick-Films on Flexible Nickel Substrates with Textured Buffer Layers. – Applied Physics Letters, 1994, 65(15), pp. 1961–1963.
15. Wang C.P. et al. Deposition of in-Plane Textured MgO on Amorphous Si3N4 Substrates by Ion-Beam-Assisted Deposition and Comparisons with Ion-Beam-Assisted Deposited Yttria-Stabilized-Zirconia. – Applied Physics Letters, 1997, 71(20), pp. 2955–2957.
16. Arendt P.N., Foltyn S.R. Biaxially Textured IBAD-MgO Templates for YBCO-Coated Conductors. – MRS Bulletin, 2004, 29(8), pp. 543–550.
17. Obradors X. et al. Progress Towards All-Chemical Super-conducting YBa2Cu3O7-Coated Conductors. – Superconductor Science & Technology, 2006, 19(3), pp. S13–S26.
18. Hasegawa K. et al. Biaxially Aligned YBCO Film Tapes Fabricated by All Pulsed Laser Deposition. – Applied Superconductivity, 1996, 4(10-11), pp. 487–493.
19. Bauer M., Semerad R., Kinder H. YBCO Films on Metal Substrates with Biaxially Aligned MgO Buffer Layers. – IEEE Transactions on Applied Superconductivity, 1999, 9(2), pp. 1502–1505.
20. The National High Magnetic Field Laboratory [Электрон. ресурс], URL: https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots (дата обращения 10.07.2023).
21. Foltyn S.R. et al. Materials Science Challenges for High-Temperature Superconducting Wire. – Nature Materials, 2007, 6(9), pp. 631–642.
22. Jian Zhang et al. Progress in the Study of Vortex Pinning Centers in High-Temperature Superconducting Films. – Nanomaterials, 2022, 12: 4000, DOI:10.3390/nano12224000.
23. Kwok W.K. et al. Vortices in High-Performance High-Temperature Superconductors. – Reports on Progress in Physics, 2016, 79(11): 116501, DOI:10.1088/0034-4885/79/11/116501.
24. Puig T. et al. Vortex Pinning in Chemical Solution Nano-structured YBCO Films. – Superconductor Science and Technology, 2008, 21(3), DOI:10.1088/0953-2048/21/3/034008.
25. Blatter G., Geshkenbein V.B., Larkin A. From Isotropic to Anisotropic Superconductors: A Scaling Approach. – Physical Review Letters,1992, 68: 875, DOI:10.1103/PhysRevLett.68.875.
26. Christen D.K., Thompson J.R. Current Problems at High Tc. – Nature, 1993, vol. 364, No. 6433: 98.
27. Feighan J.P.F. et al. Materials Design for Artificial Pinning Centers in Superconductor PLD Coated Conductors. – Superconductor Science and Technology, 2017, 30 (12), DOI:10.1088/1361-6668/aa90d1.
28. Mele P. et al. Ultra-High Flux Pinning Properties of BaMO3-doped YBa2Cu3O7−x Thin Films (M = Zr, Sn). – Superconductor Science and Technology, 2008, 21 (3), DOI:10.1088/0953-2048/21/3/032002.
29. Karapetrov G. et al. Adjustable Superconducting Anisotropy in MoGe-Permalloy Hybrids. – Journal of Physics Conference Series, 2009, 150(5):052095, DOI:10.1088/1742-6596/150/5/052095.
30. Selvamanickam V. et al. The Low-Temperature, High-Magnetic-Field Critical Current Characteristics of Zr-Added (Gd,Y)Ba2Cu3Ox Superconducting Tapes. – Superconductor Science and Tech-nology, 2012, 25: 125013, DOI:10.1088/0953-2048/25/12/125013.
31. Maiorov B. et al. Synergetic Combination of Different Types of Defect to Optimize Pinning Landscape Using BaZrO(3)-doped YBa(2)Cu(3)O(7). – Nature Materials, 2009, 8(5), pp. 398–404, DOI:10.1038/nmat2408.
32. Feighan J.P.F., Kursumovic A., MacManus-Driscoll J. Materials Design for Artificial Pinning Centres in Superconductor PLD Coated Conductors. – Superconductor Science and Technology, 2017, 30(12), DOI:10.1088/1361-6668/aa90d1.
33. Tang X. et al. Effect of BaZrO3/Ag Hybrid Doping to the Microstructure and Performance of Fluorine-Free MOD Method Derived YBa2Cu3O7-x Superconducting Thin Films. – Journal of Materials Science-Materials in Electronics, 2015, 26(3), pp. 1806–1811, DOI:10.1007/s10854-014-2614-7.
34. Wang H.Y. et al. Microstructure and Superconducting Properties of (BaTiO3, Y2O3)-doped YBCO Films under Different Firing Temperatures. – Rare Metals, 2017, 36(1), pp. 37–41, DOI:10.1007/s12598-015-0606-2.
35. Wang H.Y. et al. Strongly Enhanced Flux Pinning in the YBa2Cu3O7-X Films with the Co-Doping of BaTiO3 Nanorod and Y2O3 Nanoparticles at 65 K. – Chinese Physics B, 2015, 24(9): 097401, DOI:10.1088/1674-1056/24/9/097401.
36. Li M.Y. et al. Microstructures Property and Improved J(c) of Eu-Doped YBa2Cu3.6O7-delta Thin Films by Trifluoroacetate Metal Organic Deposition Process. – Journal of Superconductivity and Novel Magnetism, 2017, 30(5), pp. 1137–1143.
37. Chen J. et al. Nucleation and Epitaxy Growth of High-Entropy REBa2Cu3O(7-δ)(RE = Y, Dy, Gd, Sm, Eu) thin Films by Metal Organic Deposition. – Journal of Rare Earths, 2023,41(07), pp. 1091–1098.
38. Blatter G. et al. Vortices in High-Temperature Superconduc-tors. – Reviews of Modern Physics, 1994, 66(4), pp. 1125–1388.
39. Jha A.K., Khare N., Pinto R. Influence of Interfacial LSMO Nanoparticles/Layer on the Vortex Pinning Properties of YBCO Thin Film. – Journal of Superconductivity and Novel Magnetism, 2014, 27(4), pp. 1021–1026.
40. Macmanus-Driscoll J.L. et al. Strongly Enhanced Current Densities in Superconducting Coated Conductors of YBa2Cu3O7-x + + BaZrO3. – Nature Materials, 2004, 3(7), pp. 439–443.
41. Selvamanickam V. et al. Critical Current Density Above 15 MA cm−2 at 30 K, 3 T in 2.2 μm thick Heavily-Doped (Gd,Y)Ba2Cu3Ox Superconductor Tapes. – Superconductor Science and Technology. 2015, 28(7), DOI:10.1088/0953-2048/28/7/072002.
42. Xu A.X. et al. Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors. – IEEE Transactions on Applied Superconductivity, 2015, 25(3), DOI: 10.1109/TASC.2014.2375231.
43. Llordés A. Nanoscale Strain-Induced Pair Suppression as a Vortex-Pinning Mechanism in High-Temperature Superconductors. – Nature Materials, 2012, 11(4), pp. 329–336, DOI:10.1038/nmat3247.
44. Coll M. et al. Size-Controlled Spontaneously Segregated Ba2YTaO6 Nanoparticles in YBa2Cu3O7 Nanocomposites Obtained by Chemical Solution Deposition. – Superconductor Science and Technology, 2014, 27: 044008, DOI:10.1088/0953-2048/27/4/044008.
45. Coll M. et al. Solution-Derived YBa2Cu3O7 Nanocomposite Films with a Ba2YTaO6 Secondary Phase for Improved Superconducting Properties. – Superconductor Science and Technology, 2013, 26(1): 015001, DOI:10.1088/0953-2048/26/1/015001.
46. Horita H. et al. Miniaturization of BaHfO3 Nanoparticles in YBa2Cu3Oy-Coated Conductors Using a Two-Step Heating Process in the TFA-MOD Method. – Superconductor Science and Technology, 2017, 30: 025022.
47. Miura M. et al. Tuning Nanoparticle Size for Enhanced Functionality in Perovskite Thin Films Deposited by Metal Organic Deposition. – NPG Asia Mater., 2017, 9(11): am2017197, DOI:10.1038/am.2017.197.
48. Nakaoka K. et al. Another Approach For Controlling Size and Distribution of Nanoparticles in Coated Conductors Fabricated by the TFA-MOD Method. – Superconductor Science and Technology, 2017, 30(5): 055008, DOI:10.1088/1361-6668/aa66e1,
49. Cayado P. et al. Epitaxial YBa2Cu3O7−x Nanocomposite Thin Films from Colloidal Solutions. – Superconductor Science and Technology, 2015, 28(12): 124007, DOI:10.1088/0953-2048/28/ 12/124007.
50. De Keukeleere K. et al. Superconducting YBa2Cu3O7–δ Nanocomposites Using Preformed ZrO2 Nanocrystals: Growth Mechanisms and Vortex Pinning Properties. – Advanced Electronic Materials, 2016, 2 (10), DOI:10.1002/aelm.201600161.
51. Bartolomé E. et al. Hybrid YBa2Cu3O7 Superconducting–Ferromagnetic Nanocomposite Thin Films Prepared from Colloidal Chemical Solutions. – Advanced Electronic Materials, 2017, DOI:10.1002/aelm.201700037.
52. Solano E. et al. Facile and efficient One-Pot Solvothermal and Microwave-Assisted Synthesis of Stable Colloidal Solutions of MFe2O4 Spinel Magnetic Nanoparticles. – Journal of Nanoparticle Research, 2012, 14: 1034, DOI:10.1007/s11051-012-1034-y.
53. De Keukeleere K. et al. Fast and Tunable Synthesis of ZrO2 Nanocrystals: Mechanistic Insights into Precursor Dependence. – Inorganic Chemistry, 2015, 54(7), pp. 3469–3476, DOI: 10.1021/acs.inorgchem.5b00046.
54. Obradors X. et al. Epitaxial YBa2Cu3O7−x Nanocomposite Films and Coated Conductors from BaMO3 (M = Zr, Hf) Colloidal Solutions. – Superconductor Science and Technology, 2018, 31(4), DOI: 10.1088/1361-6668/aaaad7.
55. Xu A. et al. Strongly Enhanced Vortex Pinning from 4 to 77 K in Magnetic Fields up to 31 T in 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O Superconducting Tapes. – APL Materials, 2014, vol. 2 (4), DOI: 10.1063/1.4872060.
#
REFERENCES
1. Onnes H.K. Further Experiments with Liquid Helium D – On the Change of the electrical Resistance of Pure Metals at Very Low Temperatures, etc V The Disappearance of the Resistance of Mercury. – Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam, 1911, 14, pp. 113–115.
2. Bednorz J.G., Muller K.A. Possible High-Tc Superconductivity in the Ba-La-Cu-O System. – Zeitschrift Fur Physik B-Condensed Matter, 1986, 64(2), pp. 189–193.
3. Maeda H. et al. A New High-Tc Oxide Superconductor without a Rare-Earth Element. – Japanese Journal of Applied Physics, 1988, 27 (Part 2, No.2), pp. L209–L210, DOI:10.1143/jjap.27.l209.
4. Macmanus-Driscoll J.L., Wimbush S.C. Processing and Application of High-Temperature Superconducting Coated Conductors. – Nature Reviews Materials, 2021, 6(7), pp. 587–604, DOI:10.1038/s41578-021-00290-3.
5. Nagamatsu J. et al. Superconductivity at 39 K in Magnesium Diboride. – Nature, 2001, 410(6824), pp. 63–64, DOI:10.1038/35065039.
6. Kamihara Y. et al. Iron-Based Layered Superconductor La O1-xFxFeAs (x = 0.05–0.12) with Tc = 26 K. – Journal of the American Chemical Society, 2008, 130(11), pp. 3296–3297, DOI:10.1021/ja800073m.
7. Wen H.H. et al. Superconductivity at 25K in Hole-Doped (La(1-x)Sr4(x))OFeAs. – EPL (Europhysics Letters), 2008, 82(1), DOI:10.1209/0295-5075/82/17009.
8. Yao C., Ma Y. Superconducting Materials: Challenges and Opportunities for Large-Scale Applications. – iScience, 2021, 24(6): 102541, DOI:10.1016/j.isci.2021.102541.
9. Hilgenkamp H., Mannhart J. Grain Boundaries in High-T-c Superconductors. – Review of Modern Physics, 2002, 74(2), pp. 485–549, DOI:10.1103/RevModPhys.74.485.
10. Goyal A. et al. Epitaxial Superconductors on Rolling-Assisted Biaxially-Textured Substrates (RABiTS): A Route Towards High Critical Current Density Wire. – Applied Superconductivity, 1996, 4(10-11), pp. 403–427, DOI:10.1016/S0964-1807(97)00029-X.
11. Goyal A. et al. Recent Progress in the Fabrication of High-J(c) Tapes by Epitaxial Deposition of YBCO on RABiTS. – Physica C, 2001, vol. 357, pp. 903–913.
12. Rupich M.W. et al. YBCO Coated Conductors by an MOD/RABiTS (TM) Process. – Transactions on Applied Superconductivity, 2003, 13(2), pp. 2458–2461, DOI:10.1109/TASC.2003.811820.
13. Goyal A., Paranthaman M.P., Schoop U. The RABiTS Approach: Using Rolling-Assisted Biaxially Textured Substrates for High-Performance YBCO Superconductors. – MRS Bulletin, 2004, 29(08), pp. 552–561, DOI:10.1557/mrs2004.161.
14. Wu X.D. et al. High-Current YBa2Cu3O7-Delta Thick-Films on Flexible Nickel Substrates with Textured Buffer Layers. – Applied Physics Letters, 1994, 65(15), pp. 1961–1963.
15. Wang C.P. et al. Deposition of in-Plane Textured MgO on Amorphous Si3N4 Substrates by Ion-Beam-Assisted Deposition and Comparisons with Ion-Beam-Assisted Deposited Yttria-Stabilized-Zirconia. – Applied Physics Letters, 1997, 71(20), pp. 2955–2957.
16. Arendt P.N., Foltyn S.R. Biaxially Textured IBAD-MgO Templates for YBCO-Coated Conductors. – MRS Bulletin, 2004, 29(8), pp. 543–550.
17. Obradors X. et al. Progress Towards All-Chemical Superconducting YBa2Cu3O7-Coated Conductors. – Superconductor Science & Technology, 2006, 19(3), pp. S13–S26.
18. Hasegawa K. et al. Biaxially Aligned YBCO Film Tapes Fabricated by All Pulsed Laser Deposition. – Applied Superconductivity, 1996, 4(10-11), pp. 487–493.
19. Bauer M., Semerad R., Kinder H. YBCO Films on Metal Substrates with Biaxially Aligned MgO Buffer Layers. – IEEE Transactions on Applied Superconductivity, 1999, 9(2), pp. 1502–1505.
20. The National High Magnetic Field Laboratory [Electron. Resource], URL: https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots (Date of appeal 10.07.2023).
21. Foltyn S.R. et al. Materials Science Challenges for High-Temperature Superconducting Wire. – Nature Materials, 2007, 6(9), pp. 631–642.
22. Jian Zhang et al. Progress in the Study of Vortex Pinning Centers in High-Temperature Superconducting Films. – Nanomaterials, 2022, 12: 4000, DOI:10.3390/nano12224000.
23. Kwok W.K. et al. Vortices in High-Performance High-Temperature Superconductors. – Reports on Progress in Physics, 2016, 79(11): 116501, DOI:10.1088/0034-4885/79/11/116501.
24. Puig T. et al. Vortex Pinning in Chemical Solution Nanostructured YBCO Films. – Superconductor Science and Techno-logy, 2008, 21(3), DOI:10.1088/0953-2048/21/3/034008.
25. Blatter G., Geshkenbein V.B., Larkin A. From Isotropic to Anisotropic Superconductors: A Scaling Approach. – Physical Review Letters,1992, 68: 875, DOI:10.1103/PhysRevLett.68.875.
26. Christen D.K., Thompson J.R. Current Problems at High Tc. – Nature, 1993, vol. 364, No. 6433: 98.
27. Feighan J.P.F. et al. Materials Design for Artificial Pinning Centers in Superconductor PLD Coated Conductors. – Superconductor Science and Technology, 2017, 30 (12), DOI:10.1088/1361-6668/aa90d1.
28. Mele P. et al. Ultra-High Flux Pinning Properties of BaMO3-doped YBa2Cu3O7−x Thin Films (M = Zr, Sn). – Superconductor Science and Technology, 2008, 21 (3), DOI:10.1088/0953-2048/21/3/032002.
29. Karapetrov G. et al. Adjustable Superconducting Anisotropy in MoGe-Permalloy Hybrids. – Journal of Physics Conference Series, 2009, 150(5):052095, DOI:10.1088/1742-6596/150/5/052095.
30. Selvamanickam V. et al. The Low-Temperature, High-Magnetic-Field Critical Current Characteristics of Zr-Added (Gd,Y)Ba2Cu3Ox Superconducting Tapes. – Superconductor Science and Technology, 2012, 25: 125013, DOI:10.1088/0953-2048/25/12/125013.
31. Maiorov B. et al. Synergetic Combination of Different Types of Defect to Optimize Pinning Landscape Using BaZrO(3)-doped YBa(2)Cu(3)O(7). – Nature Materials, 2009, 8(5), pp. 398–404, DOI:10.1038/nmat2408.
32. Feighan J.P.F., Kursumovic A., MacManus-Driscoll J. Materials Design for Artificial Pinning Centres in Superconductor PLD Coated Conductors. – Superconductor Science and Technology, 2017, 30(12), DOI:10.1088/1361-6668/aa90d1.
33. Tang X. et al. Effect of BaZrO3/Ag Hybrid Doping to the Microstructure and Performance of Fluorine-Free MOD Method Derived YBa2Cu3O7-x Superconducting Thin Films. – Journal of Materials Science-Materials in Electronics, 2015, 26(3), pp. 1806–1811, DOI:10.1007/s10854-014-2614-7.
34. Wang H.Y. et al. Microstructure and Superconducting Properties of (BaTiO3, Y2O3)-doped YBCO Films under Different Firing Temperatures. – Rare Metals, 2017, 36(1), pp. 37–41, DOI:10.1007/s12598-015-0606-2.
35. Wang H.Y. et al. Strongly Enhanced Flux Pinning in the YBa2Cu3O7-X Films with the Co-Doping of BaTiO3 Nanorod and Y2O3 Nanoparticles at 65 K. – Chinese Physics B, 2015, 24(9): 097401, DOI:10.1088/1674-1056/24/9/097401.
36. Li M.Y. et al. Microstructures Property and Improved J(c) of Eu-Doped YBa2Cu3.6O7-delta Thin Films by Trifluoroacetate Metal Organic Deposition Process. – Journal of Superconductivity and Novel Magnetism, 2017, 30(5), pp. 1137–1143.
37. Chen J. et al. Nucleation and Epitaxy Growth of High-Entropy REBa2Cu3O(7-δ)(RE=Y, Dy, Gd, Sm, Eu)thin Films by Metal Organic Deposition. – Journal of Rare Earths, 2023,41(07), pp. 1091–1098.
38. Blatter G. et al. Vortices in High-Temperature Superconductors. – Reviews of Modern Physics, 1994, 66(4), pp. 1125–1388.
39. Jha A.K., Khare N., Pinto R. Influence of Interfacial LSMO Nanoparticles/Layer on the Vortex Pinning Properties of YBCO Thin Film. – Journal of Superconductivity and Novel Magnetism, 2014, 27(4), pp. 1021–1026.
40. Macmanus-Driscoll J.L. et al. Strongly Enhanced Current Densities in Superconducting Coated Conductors of YBa2Cu3O7-x + BaZrO3. – Nature Materials, 2004, 3(7), pp. 439–443.
41. Selvamanickam V. et al. Critical Current Density Above 15 MA cm−2 at 30 K, 3 T in 2.2 μm thick Heavily-Doped (Gd,Y)Ba2Cu3Ox Superconductor Tapes. – Superconductor Science and Technology. 2015, 28(7), DOI:10.1088/0953-2048/28/7/072002.
42. Xu A.X. et al. Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors. – IEEE Transactions on Applied Superconductivity, 2015, 25(3), DOI: 10.1109/TASC.2014.2375231.
43. Llordés A. Nanoscale Strain-Induced Pair Suppression as a Vortex-Pinning Mechanism in High-Temperature Superconductors. – Nature Materials, 2012, 11(4), pp. 329–336, DOI:10.1038/nmat3247.
44. Coll M. et al. Size-Controlled Spontaneously Segregated Ba2YTaO6 Nanoparticles in YBa2Cu3O7 Nanocomposites Obtained by Chemical Solution Deposition. – Superconductor Science and Technology, 2014, 27: 044008, DOI:10.1088/0953-2048/27/4/044008.
45. Coll M. et al. Solution-Derived YBa2Cu3O7 Nanocomposite Films with a Ba2YTaO6 Secondary Phase for Improved Superconducting Properties. – Superconductor Science and Technology, 2013, 26(1): 015001, DOI:10.1088/0953-2048/26/1/015001.
46. Horita H. et al. Miniaturization of BaHfO3 Nanoparticles in YBa2Cu3Oy-Coated Conductors Using a Two-Step Heating Process in the TFA-MOD Method. – Superconductor Science and Technology, 2017, 30: 025022.
47. Miura M. et al Tuning Nanoparticle Size for Enhanced Functionality in Perovskite Thin Films Deposited by Metal Organic Deposition. – NPG Asia Mater., 2017, 9(11): am2017197, DOI:10.1038/am.2017.197.
48. Nakaoka K. et al. Another Approach For Controlling Size and Distribution of Nanoparticles in Coated Conductors Fabricated by the TFAMOD Method. – Superconductor Science and Technology, 2017, 30(5): 055008, DOI:10.1088/1361-6668/aa66e1,
49. Cayado P. et al. Epitaxial YBa2Cu3O7−x Nanocomposite Thin Films from Colloidal Solutions. – Superconductor Science and Technology, 2015, 28(12): 124007, DOI:10.1088/0953-2048/28/12/124007.
50. De Keukeleere K. et al. Superconducting YBa2Cu3O7–δ Nanocomposites Using Preformed ZrO2 Nanocrystals: Growth Mechanisms and Vortex Pinning Properties. – Advanced Electronic Materials, 2016, 2 (10), DOI:10.1002/aelm.201600161.
51. Bartolomé E. et al. Hybrid YBa2Cu3O7 Superconducting–Ferromagnetic Nanocomposite Thin Films Prepared from Colloidal Chemical Solutions. – Advanced Electronic Materials, 2017, DOI:10.1002/aelm.201700037.
52. Solano E. et al. Facile and efficient One-Pot Solvothermal and Microwave-Assisted Synthesis of Stable Colloidal Solutions of MFe2O4 Spinel Magnetic Nanoparticles. – Journal of Nanoparticle Research, .2012, 14: 1034, DOI:10.1007/s11051-012-1034-y.
53. De Keukeleere K. et al. Fast and Tunable Synthesis of ZrO2 Nanocrystals: Mechanistic Insights into Precursor Dependence. – Inorganic Chemistry, 2015, 54(7), pp. 3469–3476, DOI: 10.1021/acs.inorgchem.5b00046.
54. Obradors X. et al. Epitaxial YBa2Cu3O7−x Nanocomposite Films and Coated Conductors from BaMO3 (M=Zr, Hf) Colloidal Solutions. – Superconductor Science and Technology, 2018, 31(4), DOI: 10.1088/1361-6668/aaaad7.
55. Xu A. et al. Strongly Enhanced Vortex Pinning from 4 to 77 K in Magnetic Fields up to 31 T in 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O Superconducting Tapes. – APL Materials, 2014, vol. 2 (4), DOI: 10.1063/1.4872060