A Superconducting Inductor Electrical Machine with Combined Excitation

  • Roman I. IL’YASOV
  • Dmitriy S. DEZHIN
  • Irina N. DEZHINA
Keywords: inductor electrical machine, magnetic flux, combined excitation, high-temperature superconductivity, excitation winding, armature winding

Abstract

For constructing a fully electrical aircraft [8—10], as well as electrical marine [11—12] and overland transport, compact brushless turbine generators and motors with a high specific power capacity are required. Such characteristics can be obtained by increasing the induction in the air cap and the stator linear load. The most promising method for achieving this is to use the excitation and armature winding coils on the basis of high-temperature superconductors (HTSC) [1—5, 13]. To this end, conventional synchronous generators with electromagnetic excitation (with HTSC coils on the rotor) should be equipped with a rotating cryostat and sliding contacts. A conventional inductor motor does not have rotating HTSC excitation coils and a cryostat. However, since there is no alternation of inductor poles polarity, the EMF has a comparaively low value. The article describes the general design of an inductor motor with immobile HTSC coils that makes it possible to obtain an increased specific output power. In addition, the results from 3D modeling of magnetic fields are presented.

Author Biographies

Roman I. IL’YASOV

IL’YASOV Roman I. (National Research University «Moscow Aviation Institute» — NRU«MAI», Moscow, Russia) — Associate Professor, Cand. Sci. (Eng.)

Dmitriy S. DEZHIN

DEZHIN Dmitriy S. (NRU «MAI», Moscow, Russia) — Associate Professor, Cand. Sci. (Eng.)

Irina N. DEZHINA

DEZHINA IRINA N. (NRU «MAI», Moscow, Russia) — Ingineer

References

Kovalev K., Kovalev L., Poltavets V., Samsonovich S., Ilyasov R., Levin A., Surin M. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW. — IOP Publishing Journal of Physics: Conference Series 507 (2014) 032023. Doi:10.1088/1742-6596/507/3/032023.

Kozub S., Bogdanov I., Dezhin D., Kashtanov E., Kovalev K., Shuvalov V., Smirnov V., Sytnik V., Shcherbakov P., Tkachenko L. HTS Racetrack Coils for Electrical Machines. — Refrigeration Science and Technology, vоl. 2014, No.1, pp. 283—287.

Kovalev K.L., Poltavets V.N., Ilyasov R.I., Verzhbitsky L.G., Kozub S.S. 1 MVA HTS-2G Generator for Wind Turbines. - Proceedings of International Conf. on Innovations and Prospects of Development of Mining Machinery and Electrical Engineering 2017 (IPDME), Russia, 20.10.2017, pp. 1-6.

Dezhin D.S., Kovalev K.L., Verzhbitskiy L.G., Kozub S.S., Firsov V.P. Design and Testing of 200 kW Synchronous Motor with 2G HTS Field Coils. — Proceedings of International Conf. on Innovations and Prospects of Development of Mining Machinery and Electrical Engineering 2017 (IPDME), Russia, No. 87 (2017), pp. 1 - 7.

Ковалев Л.К., Ковалев К.Л., Конеев С.М.-А., Пенкин В.Т., Полтавец В.Н., Ильясов Р.И., Дежин Д.С. Электрические ма­шины и устройства на основе массивных высокотемпературных сверхпроводников. М.: Физматлит, 2010. 369 с.

Бут Д.А. Бесконтактные электрические машины. М.: Высшая школа, 1990, 416 с.

Lokhandwalla M., Haran K.S., Alexander J.P. Scaling studies of high speed high temperature superconducting generator. - Proceedings of 20th International Conf. on Electrical Machines (ICEM 2012), 6349958, pp. 751—756.

Masson P.J., Breschi M., Tixador P., Luongo C.A. Design of HTS Axial Flux Motor for Aircraft Propulsion. — IEEE Transactions on Applied Superconductivity, 2007, vol. 17, No 2, pp. 1533—1536.

Иванов Н.С., Кобзева И.Н., Ковалев К.Л., Семенихин В.С. Аналитическая методика расчета полностью сверхпроводнико- вой электрической машины для летательных аппаратов. Инно­вационные технологии в энергетике. Кн. 3. Прикладная высо­котемпературная сверхпроводимость. М.: Наука, 2016, 142 с.

Felder J.L., Kim H.D., Brown G.V. Turboelectric distributed propulsion engine cycle analysis for hybrid-wing-body aircraft. — 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 2009.

Sivasubramaniam K., Laskaris E.T., Bray J.W. High power density HTS iron core machines for marine applications. — 2007 IEEE Power Engineering Society General Meeting, ES 4276059.

Herbst J.D., Gattozzi A.L., Hebner R.E. Megawatt Power Module for Ship Service Supplement. — Program Technical Report, January 2009, Center of Electromechanics, The University of Texas at Austin.

Kovalev K.l., Verzhbitsky L.G., Kozub S.S., Penkin V.T., Larionov A.E., Modestov K.A., Ivanov N.S., Tulinova E.E., Dubensky A.A. Brushless superconducting synchronous generator with claw-shaped poles and permanent magnets. — IEEE Transactions on Applied Superconductivity. DOI: 10.1109/TASC.2016.2524656, April 2016 Article#: 5202405.
#
Kovalev K., Kovalev L., Poltavets V., Samsonovich S., Ilyasov R., Levin A., Surin M. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW. — IOP Publishing Journal of Physics: Conference Series 507 (2014) 032023. Doi:10.1088/1742-6596/507/3/032023.

Kozub S., Bogdanov I., Dezhin D., Kashtanov E., Kovalev K., Shuvalov V., Smirnov V., Sytnik V., Shcherbakov P., Tkachenko L. HTS Racetrack Coils for Electrical Machines. — Refrigeration Science and Technology, vоl. 2014, No.1, pp. 283—287.

Kovalev K.L., Poltavets V.N., Ilyasov R.I., Verzhbitsky L.G., Kozub S.S. 1 MVA HTS-2G Generator for Wind Turbines. — Development of Mining Machinery and Electrical Engineering 2017 (IPDME), Russia, 20.10.2017, pp. 1-6. Proceedings of International Conf. on Innovations and Prospects of Development of Mining Machinery and Electrical Engineering 2017 (IPDME), Russia, 20.10.2017, pp. 1-6.

Dezhin D.S., Kovalev K.L., Verzhbitskiy L.G., Kozub S.S., Firsov V.P. Design and Testing of 200 kW Synchronous Motor with 2G HTS Field Coils. — Proceedings of International Conf. on Innovations and Prospects of Development of Mining Machinery and Electrical Engineering 2017 (IPDME), Russia, No. 87 (2017), pp. 1-7.

Kovalev L.K.Kovalev K.L., Koneyev S. M-A., Penkin V.T., Poltavets V.M., Il’yasov R.I., Dezhin D.S. Elektricheskiye mashiny i ustroystva na osnove massivnykh vysokotemperaturnykh sverkhprovodnikov (Electric machines and out-of-date facilities based on massive high-temperature superconductors). Moscow, Fizmatlit, 2010. 369 p.

But D.A. Beskontaktnye elektricheskiye mashiny (A contactless electrical machines). Moscow, Vysshaya shkolam 1990, 416 p.

Lokhandwalla M., Haran K. S., Alexander J.P. Scaling studies of high speed high temperature superconducting generator. - Proceedings of 20th International Conf. on Electrical Machines (ICEM 2012), 6349958, pp. 751—756.

Masson P.J., Breschi M., Tixador P., Luongo C.A. Design of HTS Axial Flux Motor for Aircraft Propulsion. — IEEE Transactions on Applied Superconductivity, 2007, vol. 17, No 2, pp. 1533—1536.

Ivanov N.S., Kobzeva I.N., Kovalev K.L., Semenikhin V.S. Analiticheskaya metodika rascheta polnost’yu sverkhprovodnikovoy elektricheskoy mashiny dlya letatel’nykh apparatov. Innovatsionnye tekhnologii v energetike. Kn. 3. Prikladnaya vysokotemperaturnaya sverkhprovodimost’ (Analytical technique for design calculation of a fully superconducting electrical machine for aircrafts. Innovative technologies in power engineering. Applied high-temperature superconductivity). Moscow, Nauka, 2016, 142 p.

Felder J.L., Kim H.D., Brown G.V. Turboelectric distributed propulsion engine cycle analysis for hybrid-wing-body aircraft. — 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 2009.

Sivasubramaniam K., Laskaris E.T., Bray J.W. High power density HTS iron core machines for marine applications. — 2007 IEEE Power Engineering Society General Meeting, ES 4276059.

Herbst J.D., Gattozzi A.L., Hebner R.E. Megawatt Power Module for Ship Service Supplement. — Program Technical Report, January 2009, Center of Electromechanics, The University of Texas at Austin.

Kovalev K.l., Verzhbitsky L.G., Kozub S.S., Penkin V.T., Larionov A.E., Modestov K.A., Ivanov N.S., Tulinova E.E., Dubensky A.A. Brushless superconducting synchronous generator with claw-shaped poles and permanent magnets. — IEEE Transactions on Applied Superconductivity. DOI: 10.1109/TASC.2016.2524656, April 2016 Article#: 5202405.
Published
2019-07-23
Section
Article