Обзор методов идентификации места возмущения в электрических сетях на основе синхронизированных векторных измерений и алгоритмов машинного обучения

  • Андрей Владимирович Паздерин
  • Михаил Дмитриевич Сенюк
  • Виктор Викторович Классен
  • Даниил Андреевич Теплухин
  • Сергей Евгеньевич Шендер
Ключевые слова: энергосистема, короткое замыкание, синхронизированные векторные измерения, машинное обучение, мета-анализ

Аннотация

Внедрение в электрические сети возобновляемых источников электроэнергии, устройств управления на базе силовой электроники и интеллектуальных систем анализа и управления привели к изменению динамики переходных процессов в электроэнергетических системах. Увеличение скорости протекания переходных процессов, вызванное снижением суммарной инерции энергосистем, предъявляет новые требования к быстродействию устройств противоаварийной автоматики и релейной защиты. Одним из перспективных направлений, позволяющим существенно снизить алгоритмическую задержку устройств управления и защиты, является использование алгоритмов машинного обучения для синтеза закона управления и идентификации места возмущения. В статье дан анализ работ, посвящённых адаптивным методикам локализации места возмущения в распределительных и магистральных электрических сетях на основе алгоритмов машинного обучения и синхронизированных векторных измерений. Проведено сравнение исследований, посвященных алгоритмам машинного обучения, точности и вычислительной задержки. На основе проведённого мета-анализа определены перспективные направления исследований проблемы идентификации места возмущения.

Биографии авторов

Андрей Владимирович Паздерин

доктор техн. наук, профессор, заведующий кафедрой автоматизированных электрических систем, Уральский федеральный университет имени первого президента России Б.Н. Ельцина (УрФУ), Екатеринбург, Россия; a.v.pazderin@urfu.ru

Михаил Дмитриевич Сенюк

кандидат техн. наук, ведущий инженер кафедры автоматизированных электрических систем, УрФУ, Екатеринбург, Россия; mdseniuk@urfu.ru

Виктор Викторович Классен

аспирант кафедры автоматизированных электрических систем, УрФУ, Екатеринбург, Россия; Viktor.Klassen@at.urfu.ru

Даниил Андреевич Теплухин

аспирант кафедры автоматизированных электрических систем, УрФУ, Екатеринбург, Россия; daniiltepluhin@rambler.ru

Сергей Евгеньевич Шендер

аспирант кафедры автоматизированных электрических систем, УрФУ, Екатеринбург, Россия; s.e.shender@urfu.ru

Литература

1. Подковальников С.В. Смена парадигмы управления электроэнергетическими системами. – Электричество, 2024, № 3, с. 4–15.
2. Аскаров А.Б. и др. Улучшение демпфирующих свойств виртуального синхронного генератора с помощью корректирующего согласно-параллельного регулятора. – Электричество, 2024, № 1, с. 18–36.
3. Суворов А.А. Механизмы возникновения субсинхронных колебаний в энергосистемах с силовыми инверторными преобразователями. Ч. 1. – Электричество, 2025, № 1, с. 17–31.
4. Паздерин А. В. и др. Метод поиска предельного режима в заданном контролируемом сечении с применением потоковой модели. – Электричество, 2024, № 12, с. 49–57.
5. Сенюк М.Д., Паздерин А.В., Классен В.В. Совершенствование централизованной системы противоаварийной автоматики электроэнергетической системы на основе методов машинного обучения. – Электротехнические системы и комплексы, 2024, № 4 (65), с. 14–24.
6. Senyuk M. et al. Methodology for Forming a Training Sample for Power Systems Emergency Control Algorithm Based on Machine Learning. – Belarusian-Ural-Siberian Smart Energy Conference, 2023, pp. 54–59, DOI: 10.1109/BUSSEC59406.2023.10296257.
7. Фишов А.Г. и др. Активные распределительные электрические сети с децентрализованным мультиагентным управлением режимом. Ч. 1. – Электричество, 2022, № 10, c. 14–24.
8. Von Meier A. et al. Precision Micro-Synchrophasors for Distribution Systems: A Summary of Applications. – IEEE Transactions on Smart Grid, 2017, vol. 8, No. 6, pp. 2926–2936, DOI: 10.1109/TSG.2017.2720543.
9. Коровкин Н.В., Бодренков Е.А. Аналитический расчет узловых нагрузок распределительной электрической сети. – Электричество, 2021, № 9, c. 31–37.
10. Gholami M. et al. Detecting the Location of Short-Circuit Faults in Active Distribution Network Using PMU-Based State Estimation. – IEEE Transactions on Smart Grid, 2020, vol. 11, No. 2, pp. 1396–1406, DOI: 10.1109/TSG.2019.293794.
11. Usman M.U., Faruque M.O. Validation of a PMU-Based Fault Location Identification Method for Smart Distribution Network with Photovoltaics Using Real-Time Data. – IET Generation Transmission Distribution, 2018, vol. 12, pp. 5824–5833, DOI: 10.1049/ietgtd.2018.6245.
12. Chen Z. et al. Time Domain Distribution System Fault Location based on Dynamic State Estimation. – IEEE Power & Energy Society General Meeting (PESGM), 2024, DOI: 10.1109/PESGM51994.2024.10688815.
13. Pang Q. et al. Multi-Timescale-Based Fault Section Location in Distribution Networks. – IEEE Access, 2021, vol. 9, pp. 148698–148709, DOI: 10.1109/ACCESS.2021.3123180.
14. Zhao Q., Wang Z., Wang Y. Fault Location Method for an Active Distribution Network Based on a Hierarchical Optimization Model and Fault Confidence Factors. – Electronics, 2023, 12(6), DOI: 10.3390/electronics12061314.
15. Huang X., Xie Z., Huang X. Fault Location of Distribution Network Base on Improved Cuckoo Search Algorithm. – IEEE Access, 2020, vol. 8, pp. 2272–2283, DOI: 10.1109/ACCESS.2019.2962276.
16. Xie Y. et al. Fault Location in Active Distribution Network Under Hybrid Classical Quantum Computing Architecture. – IEEE Access, 2024, vol. 12, pp. 163924–163937, DOI: 10.1109/ACCESS. 2024.3482308.
17. Li W. et al. A Fully Decentralized Multi-Agent Fault Location and Isolation for Distribution Networks with DGs. – IEEE Access, 2021, vol. 9, pp. 27748–27757, DOI: 10.1109/ACCESS.2021.3058308.
18. Bhuiyan E.A. et al. A Deep Learning through DBN Enabled Transmission Line Fault Transient Classification Framework for Multimachine Microgrid Systems. – International Transactions on Electrical Energy Systems, 2022, DOI: 10.1155/2022/6820319.
19. Luo G. et al. Stacked Auto-Encoder-Based Fault Location in Distribution Network. – IEEE Access, 2020, vol. 8, pp. 28043–28053, DOI: 10.1109/ACCESS.2020.2971582.
20. Fan M. et al. Fault Location Method of Distribution Network Based on VGAE-GraphSAGE. – Processes, 2024, vol. 12, DOI: 10.3390/pr12102179.
21. Biswal M., Brahma S.M., Cao H. Supervisory Protection and Automated Event Diagnosis Using PMU Data. – IEEE Transactions on Power Delivery, 2016, 31(4), pp. 1855–1863, DOI:10.1109/TPWRD.2016.2520958.
22. Liu G. et al. Low-Complexity Nonlinear Analysis of Synchrophasor Measurements for Events Detection and Localization. – IEEE Access, 2018, vol. 6, pp. 4982–4993, DOI: 10.1109/ACCESS.2017.2772287.
23. Shu H., Gong Z., Tian X. Fault-Section Identification for Hybrid Distribution Lines Based on Principal Component Analysis. – CSEE Journal of Power and Energy Systems, 2021, vol. 7, No. 3, pp. 591–603, DOI: 10.17775/CSEEJPES.2018.00850
24. Numair M. et al. Fault Detection and Localisation in LV Distribution Networks Using a Smart Meter Data-Driven Digital Twin. – Energies, 2023, vol. 16, DOI: 10.3390/en16237850.
25. Jimenez-Aparicio M., Wilches-Bernal F., Reno M.J. Local, Single-Ended, Traveling-Wave Fault Location on Distribution Systems Using Frequency and Time-Domain Data. – IEEE Access, 2023, vol. 11, pp. 74201–74215, DOI: 10.1109/ACCESS.2023.3296737.
26. Yin Z. et al. High-Impedance Fault Section Location for Distribution Networks Based on T-Distributed Stochastic Neighbor Embedding and Variable Mode Decomposition. – Journal of Modern Power Systems and Clean Energy, 2024, vol. 12, No. 5, pp. 1495–1505, DOI: 10.35833/MPCE.2023.000225.
27. Jamali S., Bahmanyar A., Ranjbar S. Hybrid Classifier for Fault Location in Active Distribution Networks. – Protection and Control of Modern Power Systems, 2020, 5(2), DOI: 10.1186/s41601-020-00162-y.
28. Yu Y. et al. Fault Location in Distribution System Using Convolutional Neural Network Based on Domain Transformation. – CSEE Journal of Power and Energy Systems, 2021, vol. 7, No. 3, pp. 472–484, DOI: 10.17775/CSEEJPES.2020.01620.
29. Hu J. et al. Fault Location and Classification for Distribution Systems Based on Deep Graph Learning Methods. – Journal of Modern Power Systems and Clean Energy, 2023, vol. 11, No. 1, pp. 35–51, DOI: 10.35833/MPCE.2022.000204.
30. Jamei M. et al. Phasor Measurement Units Optimal Placement and Performance Limits for Fault Localization. – IEEE Journal on Selected Areas in Communications, 2020, vol. 38, No. 1, pp. 180–192, DOI: 10.1109/JSAC.2019.2951971.
31. Pereira R.A.F. et al. Improved Fault Location on Distribution Feeders Based on Matching During-Fault Voltage Sags. – IEEE Transactions on Power Delivery, 2009, vol. 24, No. 2, pp. 852–862, DOI: 10.1109/TPWRD.2009.2014480.
32. Yuvaraju V., Thangavel S., Golla M. Applications of Artificial Intelligence and PMU Data: A Robust Framework for Precision Fault Location in Transmission Lines. – IEEE Access, 2024, vol. 12, pp. 136565–136587, DOI: 10.1109/ACCESS.2024.3464088.
33. Pandey S., Srivastava A.K., Amidan B.G. A Real Time Event Detection, Classification and Localization Using Synchrophasor Data. – IEEE Transactions on Power Systems, 2020, vol. 35, No. 6, pp. 4421–4431, DOI: 10.1109/TPWRS.2020.2986019.
34. Yoon D.-H., Yoon J. Deep Learning-Based Method for the Robust and Efficient Fault Diagnosis in the Electric Power System. – IEEE Access, 2022, vol. 10, pp. 44660–44668, DOI: 10.1109/ACCESS.2022.3170685.
35. Li M. et al. Fault Identification in Power Network Based on Deep Reinforcement Learning. – CSEE Journal of Power and Energy Systems, 2022, vol. 8, No. 3, pp. 721–731, DOI: 10.17775/CSEEJPES.2020.04520.
36. De Oliveira Neto J.A., Sartori C.A.F., Manassero Junior G. Fault Location in Overhead Transmission Lines Based on Magnetic Signatures and on the Extended Kalman Filter. – IEEE Access, 2021 vol. 9, pp. 15259–15270, DOI: 10.1109/ACCESS.2021.3050211.
37. Majd A.A., Samet H., Ghanbari T. k-NN Based Fault Detection and Classification Methods for Power Transmission Systems. – Protection and Control of Modern Power Systems, 2017, 2(4), DOI: 10.1186/s41601-017-0063-z.
38. Zhang F. et al. Novel Fault Location Method for Power Systems Based on Attention Mechanism and Double Structure GRU Neural Network. – IEEE Access, 2020, vol. 8, pp. 75237–75248, DOI: 10.1109/ACCESS.2020.2988909.
39. Nawaz R. et al. Timeseries Fault Classification in Power Transmission Lines by Non-Intrusive Feature Extraction and Selection Using Supervised Machine Learning. – IEEE Access, 2024, vol. 12, pp. 93426–93449, DOI: 10.1109/ACCESS.2024.3423828.
40. Mohammadi R., Ghotbi-Maleki M., Ghaffarzadeh A. Wide-Area Fault Location in Transmission Power System Considering Measurement Uncertainty. – IEEE Access, 2024, vol. 12, pp. 42535–42543, DOI: 10.1109/ACCESS.2024.3370921.
41. Senyuk M.D., Klassen V.V., Popovtsev V.V. Adaptive Methodology for Determining Frequency Control Law in Isolated Power Systems Based on Machine Learning Algorithms. – IEEE International Multi-Conference on Engineering, Computer and Information Sciences, 2024, pp. 494–499, DOI: 10.1109/SIBIRCON63777.2024.10758496.
42. Мокеев А.В., Пискунов С.А. Дистанционная защита на основе одностороннего и двухстороннего измерения синхровекторов. – Релейная защита и автоматизация, 2024, № 1 (54), с. 8–15.
---
Исследование выполнено за счет гранта Российского научного фонда № 23-79-01024, https://rscf.ru/project/23-79-01024/
#
1. Podkoval’nikov S.V. Elektrichestvo – in Russ. (Electricity), 2024, No. 3, pp. 4–15.
2. Askarov A.B. et al. Elektrichestvo – in Russ. (Electricity), 2024, No. 1, pp. 18–36.
3. Suvorov A.A. Elektrichestvo – in Russ. (Electricity), 2025, No. 1, pp. 17–31.
4. Pazderin A. V. et al. Elektrichestvo – in Russ. (Electricity), 2024, No. 12, pp. 49–57.
5. Senyuk M.D., Pazderin A.V., Klassen V.V. Elektrotehnicheskie sistemy i kompleksy – in Russ. (Electrical Engineering Systems and Complexes), 2024, No. 4 (65), pp. 14–24.
6. Senyuk M. et al. Methodology for Forming a Training Sample for Power Systems Emergency Control Algorithm Based on Machine Learning. – Belarusian-Ural-Siberian Smart Energy Conference, 2023, pp. 54–59, DOI: 10.1109/BUSSEC59406.2023.10296257.
7. Fishov A.G. et al. Elektrichestvo – in Russ. (Electricity), 2022, No. 10, pp. 14–24.
8. Von Meier A. et al. Precision Micro-Synchrophasors for Distribution Systems: A Summary of Applications. – IEEE Transactions on Smart Grid, 2017, vol. 8, No. 6, pp. 2926–2936, DOI: 10.1109/TSG.2017.2720543.
9. Korovkin N.V., Bodrenkov E.A. Elektrichestvo – in Russ. (Electricity), 2021, No. 9, pp. 31–37.
10. Gholami M. et al. Detecting the Location of Short-Circuit Faults in Active Distribution Network Using PMU-Based State Estimation. – IEEE Transactions on Smart Grid, 2020, vol. 11, No. 2, pp. 1396–1406, DOI: 10.1109/TSG.2019.293794.
11. Usman M.U., Faruque M.O. Validation of a PMU-Based Fault Location Identification Method for Smart Distribution Network with Photovoltaics Using Real-Time Data. – IET Generation Transmission Distribution, 2018, vol. 12, pp. 5824–5833, DOI: 10.1049/iet-gtd.2018.6245.
12. Chen Z. et al. Time Domain Distribution System Fault Location based on Dynamic State Estimation. – IEEE Power & Energy Society General Meeting (PESGM), 2024, DOI: 10.1109/PESGM51994.2024.10688815.
13. Pang Q. et al. Multi-Timescale-Based Fault Section Location in Distribution Networks. – IEEE Access, 2021, vol. 9, pp. 148698–148709, DOI: 10.1109/ACCESS.2021.3123180.
14. Zhao Q., Wang Z., Wang Y. Fault Location Method for an Active Distribution Network Based on a Hierarchical Optimization Model and Fault Confidence Factors. – Electronics, 2023, 12(6), DOI: 10.3390/electronics12061314.
15. Huang X., Xie Z., Huang X. Fault Location of Distribution Network Base on Improved Cuckoo Search Algorithm. – IEEE Access, 2020, vol. 8, pp. 2272–2283, DOI: 10.1109/ACCESS.2019.2962276.
16. Xie Y. et al. Fault Location in Active Distribution Network Under Hybrid Classical Quantum Computing Architecture. – IEEE Access, 2024, vol. 12, pp. 163924–163937, DOI: 10.1109/ACCESS. 2024.3482308.
17. Li W. et al. A Fully Decentralized Multi-Agent Fault Location and Isolation for Distribution Networks with DGs. – IEEE Access, 2021, vol. 9, pp. 27748–27757, DOI: 10.1109/ACCESS.2021.3058308.
18. Bhuiyan E.A. et al. A Deep Learning through DBN Enabled Transmission Line Fault Transient Classification Framework for Multimachine Microgrid Systems. – International Transactions on Electrical Energy Systems, 2022, DOI: 10.1155/2022/6820319.
19. Luo G. et al. Stacked Auto-Encoder-Based Fault Location in Distribution Network. – IEEE Access, 2020, vol. 8, pp. 28043–28053, DOI: 10.1109/ACCESS.2020.2971582.
20. Fan M. et al. Fault Location Method of Distribution Network Based on VGAE-GraphSAGE. – Processes, 2024, vol. 12, DOI: 10.3390/pr12102179.
21. Biswal M., Brahma S.M., Cao H. Supervisory Protection and Automated Event Diagnosis Using PMU Data. – IEEE Transactions on Power Delivery, 2016, 31(4), pp. 1855–1863, DOI:10.1109/TPWRD. 2016.2520958.
22. Liu G. et al. Low-Complexity Nonlinear Analysis of Synchrophasor Measurements for Events Detection and Localization. – IEEE Access, 2018, vol. 6, pp. 4982–4993, DOI: 10.1109/ACCESS. 2017.2772287.
23. Shu H., Gong Z., Tian X. Fault-Section Identification for Hybrid Distribution Lines Based on Principal Component Analysis. – CSEE Journal of Power and Energy Systems, 2021, vol. 7, No. 3, pp. 591–603, DOI: 10.17775/CSEEJPES.2018.00850
24. Numair M. et al. Fault Detection and Localisation in LV Distribution Networks Using a Smart Meter Data-Driven Digital Twin. – Energies, 2023, vol. 16, DOI: 10.3390/en16237850.
25. Jimenez-Aparicio M., Wilches-Bernal F., Reno M.J. Local, Single-Ended, Traveling-Wave Fault Location on Distribution Systems Using Frequency and Time-Domain Data. – IEEE Access, 2023, vol. 11, pp. 74201–74215, DOI: 10.1109/ACCESS.2023.3296737.
26. Yin Z. et al. High-Impedance Fault Section Location for Distribution Networks Based on T-Distributed Stochastic Neighbor Embedding and Variable Mode Decomposition. – Journal of Modern Power Systems and Clean Energy, 2024, vol. 12, No. 5, pp. 1495–1505, DOI: 10.35833/MPCE.2023.000225.
27. Jamali S., Bahmanyar A., Ranjbar S. Hybrid Classifier for Fault Location in Active Distribution Networks. – Protection and Control of Modern Power Systems, 2020, 5(2), DOI: 10.1186/s41601-020-00162-y.
28. Yu Y. et al. Fault Location in Distribution System Using Convolutional Neural Network Based on Domain Transformation. – CSEE Journal of Power and Energy Systems, 2021, vol. 7, No. 3, pp. 472–484, DOI: 10.17775/CSEEJPES.2020.01620.
29. Hu J. et al. Fault Location and Classification for Distribution Systems Based on Deep Graph Learning Methods. – Journal of Modern Power Systems and Clean Energy, 2023, vol. 11, No. 1, pp. 35–51, DOI: 10.35833/MPCE.2022.000204.
30. Jamei M. et al. Phasor Measurement Units Optimal Placement and Performance Limits for Fault Localization. – IEEE Journal on Selected Areas in Communications, 2020, vol. 38, No. 1, pp. 180–192, DOI: 10.1109/JSAC.2019.2951971.
31. Pereira R.A.F. et al. Improved Fault Location on Distribution Feeders Based on Matching During-Fault Voltage Sags. – IEEE Transactions on Power Delivery, 2009, vol. 24, No. 2, pp. 852–862, DOI: 10.1109/TPWRD.2009.2014480.
32. Yuvaraju V., Thangavel S., Golla M. Applications of Artificial Intelligence and PMU Data: A Robust Framework for Precision Fault Location in Transmission Lines. – IEEE Access, 2024, vol. 12, pp. 136565–136587, DOI: 10.1109/ACCESS.2024.3464088.
33. Pandey S., Srivastava A.K., Amidan B.G. A Real Time Event Detection, Classification and Localization Using Synchrophasor Data. – IEEE Transactions on Power Systems, 2020, vol. 35, No. 6, pp. 4421–4431, DOI: 10.1109/TPWRS.2020.2986019.
34. Yoon D.-H., Yoon J. Deep Learning-Based Method for the Robust and Efficient Fault Diagnosis in the Electric Power System. – IEEE Access, 2022, vol. 10, pp. 44660–44668, DOI: 10.1109/ACCESS.2022.3170685.
35. Li M. et al. Fault Identification in Power Network Based on Deep Reinforcement Learning. – CSEE Journal of Power and Energy Systems, 2022, vol. 8, No. 3, pp. 721–731, DOI: 10.17775/CSEEJPES.2020.04520.
36. De Oliveira Neto J.A., Sartori C.A.F., Manassero Junior G. Fault Location in Overhead Transmission Lines Based on Magnetic Signatures and on the Extended Kalman Filter. – IEEE Access, 2021 vol. 9, pp. 15259–15270, DOI: 10.1109/ACCESS.2021.3050211.
37. Majd A.A., Samet H., Ghanbari T. k-NN Based Fault Detection and Classification Methods for Power Transmission Systems. – Protection and Control of Modern Power Systems, 2017, 2(4), DOI: 10.1186/s41601-017-0063-z.
38. Zhang F. et al. Novel Fault Location Method for Power Systems Based on Attention Mechanism and Double Structure GRU Neural Network. – IEEE Access, 2020, vol. 8, pp. 75237–75248, DOI: 10.1109/ACCESS.2020.2988909.
39. Nawaz R. et al. Timeseries Fault Classification in Power Transmission Lines by Non-Intrusive Feature Extraction and Selection Using Supervised Machine Learning. – IEEE Access, 2024, vol. 12, pp. 93426–93449, DOI: 10.1109/ACCESS.2024.3423828.
40. Mohammadi R., Ghotbi-Maleki M., Ghaffarzadeh A. Wide-Area Fault Location in Transmission Power System Considering Measurement Uncertainty. – IEEE Access, 2024, vol. 12, pp. 42535–42543, DOI: 10.1109/ACCESS.2024.3370921.
41. Senyuk M.D., Klassen V.V., Popovtsev V.V. Adaptive Methodology for Determining Frequency Control Law in Isolated Power Systems Based on Machine Learning Algorithms. – IEEE International Multi-Conference on Engineering, Computer and Information Sciences, 2024, pp. 494–499, DOI: 10.1109/SIBIRCON63777.2024.10758496.
42. Mokeev A.V., Piskunov S.A. Releynaya zashchita i avtomatizatsiya – in Russ. (Relay Protection and Automation), 2024, No. 1 (54), pp. 8–15
---
The research was financially supported by the Russian Science Foundation, grant No. 23-79-01024, https://rscf.ru/project/23-79-01024/
Опубликован
2024-12-23
Раздел
Статьи