Калининградской области: переход к изолированному режиму работы и оценка перспектив развития
Аннотация
В феврале 2025 г. страны Балтии отключились от энергообъединения ЕЭС/ОЭС (IPS/UPS) и начали синхронную работу с энергообъединением континентальной Европы, из-за чего энергосистема Калининградской области перешла к изолированному режиму работы. Электростанции Калининградской области работают на газе и угле – ресурсах, поставляемых в регион морским путём или через территорию Литвы, поэтому проблема обеспечения энергетической безопасности Калининградской области актуальна как никогда. В статье дана характеристика энергообъединений Европы, энергосистем стран Балтии, Калининградской области. Показаны особенности выхода стран Балтии из ЕЭС/ОЭС и изоляции энергосистемы Калининградской области. Рассмотрены перспективы развития изолированной энергосистемы Калининградской области с учетом трендов развития мировой энергетики: использования местных энергетических ресурсов, возобновляемых источников энергии, накопителей энергии. Проведен анализ возможности использования энергии ветра, солнца, твердых коммунальных отходов, торфа и других энергоресурсов с целью снижения зависимости Калининградской области от поставок газа и угля и повышения её энергетической безопасности. Рассмотрены перспективные технологии в области накопления энергии: натрий-ионные аккумуляторы, ветрогидроаккумулирующие электростанции, гравитационные накопители.
Литература
2. Отчеты о функционировании ЕЭС [Электрон. ресурс], URL: https://www.so-ups.ru/functioning/tech-disc/tech-disc-ups/ (дата обращения 28.03.2025).
3. Questions and Answers on the Synchronisation of the Baltic States' Electricity Networks with the Continental European Network (CEN) [Электрон. ресурс], URL: https://ec.europa.eu/commission/presscorner/detail/en/memo_18_4285 (дата обращения 28.03.2025).
4. Memorandum of Understanding on the Reinforced Baltic Energy Market Interconnection Plan “BEMIP” [Электрон. ресурс], URL: https://www.regeringen.se/contentassets/11fa61724d184dacb29edee1254d05a6/ memorandum-of-understanding-on-the-reinforced-baltic-energy-market-interconnection-plan.pdf (дата обращения 28.03.2025).
5. Zicmane I. et al. Assessment of Static Stability of Power System of the Baltic States in View of the Planned Synchronization with Networks of Western Europe to 2030. – 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2018, DOI: 10.1109/EEEIC.2018.8493852.
6. Estonia, Latvia & Lithuania Agree to Synchronise Their Electricity Grids with the European Grid by Early 2025 [Электрон. ресурс], URL: https://energy.ec.europa.eu/news/estonia-latvia-lithua-nia-agree-synchronise-their-electricity-grids-european-grid-early-2025- 2023-08-03_en (дата обращения 28.03.2025).
7. Putkonen N. et al. Modeling the Baltic Countries’ Green Transition and Desynchronization from the Russian Electricity Grid. – International Journal of Sustainable Energy Planning and Management, 2022, vol. 34, p. 45–62, DOI: 10.54337/ijsepm.7059.
8. Mahnitko A. et al. Implementation of Integration Problem for Baltic Energy Systems into Continental Europe Energy, IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2020, DOI: 10.1109/RTUCON51174.2020.9316596.
9. Bompard E. et al. Baltic Power Systems’ Integration into the EU Market Coupling under Different Desynchronization Schemes:A Comparative Market Analysis. – Energies, 2018, vol. 11, No. 8, pp. 19–45, DOI: 10.3390/en11081945.
10. Страны Балтии завершили процедуру присоединения электросистем к европейской сети [Электрон. ресурс], URL: https://www.interfax.ru/world/1007065 (дата обращения 28.03.2025).
11. Lietuvos Respublikos Energetikos Ministerija [Электрон. ресурс], URL: https://enmin.lrv.lt/en/news/lithuania-already-has-a-syn-chronisation-ready-link-with-poland/ (дата обращения 28.03.2025).
12. Белей В.Ф. Состояние и векторы развития мировой, российской и энергетики Калининградской области. – IX Международный Балтийский морской форум, 2022, с. 563–591.
13. Распоряжение Губернатора Калининградской области от 22.08.2022 № 41-р «Об утверждении схемы и программы перспективного развития электроэнергетики Калининградской области на 2023-2027 годы …».
14. Волков Э.П. О концепции переустройства электроэнергетики России. – Известия РАН. Энергетика, 2019, № 2, с. 3–16.
15. Воротницкий В.Э. Тенденции и перспективы развития техники и технологий передачи и распределения электроэнергии. – Энергоэксперт, 2023, № 2 (86), с. 28–33.
16. Галкин Ю.В. и др. Прогноз развития энергетики мира и России 2024. М.: ИНЭИ РАН, 2024, 208 с.
17. Распоряжение Правительства Российской Федерации от 09.06.2020 г. № 1523-р «Об утверждении Энергетической стратегии Российской Федерации на период до 2035 года» (в ред. от 15.02.2025).
18. Указ Президента Российской Федерации 13.05.2019 г. № 216 «Об утверждении Доктрины энергетической безопасности Российской Федерации».
19. Васильев Ю.С. и др. Оценки ресурсов возобновляемых источников энергии в России. СПб.: Изд-во Политехнического университета, 2008, 250 с.
20. Коцарь Г.В. Определение перспективных площадок размещения ветроэлектростанций при помощи геоинформационных систем на примере Калининградской области. – Промышленная энергетика, 2022, № 8, с. 49–59.
21. Рагулина И.Р. Биоэнергетический потенциал Калининградской области: автореферат дис. … канд. геогр. наук. Калининград, 2007, 24 с.
22. БЕЗРУКИХ П.П., БЕЗРУКИХ П.П. (МЛ.), ГРИБКОВ С.В. Ветроэнергетика: Справочно-методическое издание. М.: Интехэнерго-Издат, 2014, 304 с.
23. Белей В.Ф., Задорожный А.О. Перспективы использования ветропотенциала в прибрежной зоне Калининградской области. – V Международный Балтийский морской форум, 2017, с. 250–256.
24. Попель О.С. и др. Атлас ресурсов солнечной энергии на территории России: научное издание. М.: ОИВТ РАН, 2010, 54 с.
25. Global Solar Atlas 2.0 [Электрон. ресурс], URL: https://globalsolaratlas.info/ (дата обращения 28.03.2025).
26. Ellison J.F. et al. The Benefits of Grid-Scale Storage on Oahu. – Journal of Energy Storage, 2018, vol. 15, pp. 336–344, DOI: 10.1016/j.est.2017.12.009.
27. Дзедик В.А., Усачева И.В., Моткова А.А. Анализ эффективности применения накопителей энергии в различных типах электроэнергетических систем для повышения качества электроснабжения. – Энергетика и цифровизация: теория и практика трансформации: материалы II Международной научно-практической конференции, 2023, с. 18–27.
28. Rekioua D. Energy Storage Systems for Photovoltaic and Wind Systems: A Review. – Energies, 2023, vol. 16, No. 9, DOI: 10.3390/en16093893.
29. World’s Largest Sodium-Ion BESS Comes Online in China as It Seeks to Diversify Away from Lithium [Электрон. ресурс], URL: https://www.energy-storage.news/first-half-world-largest-200mwh-sodium-ion-project-comes-online-china (дата обращения 28.03.2025).
30. China’s First High-Capacity Sodium-Ion Battery Storage Station Is Launched [Электрон. ресурс], URL: https://www.globaltimes.cn/page/202405/1312098.shtml (дата обращения 28.03.2025).
31. Nayak P.K. et al. From Lithium‐Ion to Sodium‐Ion Batteries: Advantages, Challenges, and Surprises. – Angewandte Chemie International Edition, 2018, vol. 57, No. 1, pp. 102–120, DOI: 10.1002/anie.201703772.
32. Қуандық Қ.М. Краткий обзор натрий-ионного аккумулятора. – Сейфуллинские чтения – 17: Современная аграрная наука: цифровая трансформация, 2021, т. 1, вып. 3, с. 35–38.
33. Chayambuka K. et al. From Li‐Ion Batteries toward Na‐Ion Chemistries: Challenges and Opportunities. –Advanced Energy Materials, 2020, vol. 10, No. 38, DOI: 10.1002/aenm.202001310.
34. Hwang J.-Y., Myung S.-T., Sun Y.-K. Sodium-Ion Batteries: Present and Future. – Chemical Society Reviews, 2017, vol. 46, No. 12, pp. 3529–3614, DOI: 10.1039/C6CS00776G.
35. Rudola A., Wright C.J., Barker J. Reviewing the Safe Shipping of Lithium-Ion and Sodium-Ion Cells: A Materials Che-mistry Perspective. – Energy Material Advances, 2021, vol. 2021, DOI: 10.34133/2021/9798460.
36. «Росатом» показал батареи, которые будут изготавливать на гигафабрике в Немане [Электрон. ресурс], URL: https://klops.ru/kaliningrad/2024-03-26/292140-rosatom-pokazal-batarei-kotorye-budut-izgotavlivat-na-gigafabrike-v-nemane-foto (дата обращения 28.03.2025).
37. Edwards P.P., Dobson P.J. Remarks on the Safety of Lithium-Ion Batteries for Large-Scale Battery Energy Storage Systems (BESS) in the UK. – Fire Technology, 2024, DOI: 10.1007/s10694-024-01682-x.
38. Белей В.Ф., Рзай А.А. Выбор накопителя на базе аккумуляторных батарей для Калининградской энергосистемы. – Вестник молодежной науки, 2020, № 2 (24), с. 13–21.
39. Синюгин В.Ю., Магрук В.И., Родионов В.Г. Гидроаккумулирующие электростанции в современной электроэнергетике. М.: ЭНАС, 2008, 352 с.
40. Al-Masri H.M.K. et al. Optimal Coordination of Wind Power and Pumped Hydro Energy Storage. – Energies, 2019, vol. 22, No. 12, DOI: 10.3390/en12224387.
41. Tong W. et al. Solid Gravity Energy Storage: A Review. – Journal of Energy Storage, 2022, vol. 53, DOI: 10.1016/j.est.2022.105226.
42. Energy Vault Project – China, Rudong [Электрон. ресурс], URL: https://www.energyvault.com/projects/cn-rudong (дата обращения 28.03.2025).
43. Нормированная стоимость хранения энергии для твердотельной аккумулирующей электростанции оказалась ниже, чем для ГАЭС и литий-иона [Электрон. ресурс], URL: https://www.atomic-energy.ru/news/2021/05/18/113951 (дата обращения 28.03.2025).
44. Botha C.D., Kamper M.J. Capability Study of Dry Gravity Energy Storage. – Journal of Energy Storage, 2019, vol. 23, pp. 159–174, DOI: 10.1016/j.est.2019.03.015.
45. Yatoo A.M. et al. Global Perspective of Municipal Solid Waste and Landfill Leachate: Generation, Composition, Eco-Toxicity, and Sustainable Management Strategies. – Environmental Science and Pollution Research, 2024, vol. 31, No. 16, DOI: 10.1007/s11356-024-32669-4.
46. Tugov A.N. Municipal Solid Wastes-to-Energy Conversion: Global and Domestic Experience (Review). – Thermal Engineering, 2022, vol. 69, No. 12. pp. 909–924, DOI: 10.1134/S0040601522120084.
47. CEWEP Energy Efficiency Report III (Status 2007–2010) [Электрон. ресурс], URL: https://www.cewep.eu/cewep-energy-efficiency-reports/ (дата обращения 28.03.2025).
48. Hulgaard T. Integrating waste-to-energy in Copenhagen, Denmark, Proceedings of the Institution of Civil Engineers. – Civil Engineering, 2018, vol. 171, No. 5, pp. 3–10, DOI: 10.1680/jcien.17.00042.
49. О состоянии и об охране окружающей среды Российской Федерации в 2023 г. [Электрон. ресурс], URL: https://www.mnr.gov.ru/docs/o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii/gosudarstvennyy_doklad_o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii_v_2023_/ (дата обращения 28.03.2025).
50. Тугов А.Н. ТЭС на ТКО – ключевое решение для России. – Твердые бытовые отходы, 2015, № 8 (110), с. 26–32.
51. Подход к отходам: что происходит с калининградским мусором после закрытия половины полигонов ТКО [Электрон. ресурс], URL: https://fedpress.ru/article/3330381 (дата обращения 28.03.2025).
52. Statistics Finland. Production of Electricity and Heat 2023 [Электрон. ресурс], URL: https://stat.fi/en/statistics/salatuo (дата обращения 28.03.2025).
#
1. The ENTSO-E Statistical Factsheet 2023 [Electron. resource], URL: https://www.entsoe.eu/data/power-stats/ (Access on 28.03.2025).
2. Otchety o funktsionirovanii EES (Reports on the Functioning of the UES) [Electron. resource], URL: https://www.so-ups.ru/functioning/tech-disc/tech-disc-ups/ (Access on 28.03.2025).
3. Questions and Answers on the Synchronisation of the Baltic States' Electricity Networks with the Continental European Network (CEN) [Electron. resource], URL: https://ec.europa.eu/commission/presscorner/detail/en/memo_18_4285 (Access on 28.03.2025).
4. Memorandum of Understanding on the Reinforced Baltic Energy Market Interconnection Plan “BEMIP” [Electron. resource], URL: https://www.regeringen.se/contentassets/11fa61724d184dacb29edee1254d05a6/ memorandum-of-understanding-on-the-reinforced-baltic-energy-market-interconnection-plan.pdf (Access on 28.03.2025).
5. Zicmane I. et al. Assessment of Static Stability of Power System of the Baltic States in View of the Planned Synchronization with Networks of Western Europe to 2030. – 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2018, DOI: 10.1109/EEEIC.2018.8493852.
6. Estonia, Latvia & Lithuania Agree to Synchronise Their Electricity Grids with the European Grid by Early 2025 [Electron. resource], URL: https://energy.ec.europa.eu/news/estonia-latvia-lithuania-agree-synchronise-their-electricity-grids-european-grid-early-2025-2023-08-03_en (Access on 28.03.2025).
7. Putkonen N. et al. Modeling the Baltic Countries’ Green Transition and Desynchronization from the Russian Electricity Grid. – International Journal of Sustainable Energy Planning and Management, 2022, vol. 34, p. 45–62, DOI: 10.54337/ijsepm.7059.
8. Mahnitko A. et al. Implementation of Integration Problem for Baltic Energy Systems into Continental Europe Energy, IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2020, DOI: 10.1109/RTUCON51174.2020.9316596.
9. Bompard E. et al. Baltic Power Systems’ Integration into the EU Market Coupling under Different Desynchronization Schemes: A Comparative Market Analysis. – Energies, 2018, vol. 11, No. 8, pp. 19–45, DOI: 10.3390/en11081945.
10. Strany Baltii zavershili protseduru prisoedineniya elektrosistem k evropeyskoy seti (The Baltic States Have Completed the Procedure for Connecting Electrical Systems to the European Network) [Electron. resource], URL: https://www.interfax.ru/world/1007065 (Access on 28.03.2025).
11. Lietuvos Respublikos Energetikos Ministerija [Electron. resource], URL: https://enmin.lrv.lt/en/news/lithuania-already-has-a-synchronisation-ready-link-with-poland/(Access on 28.03.2025).
12. Beley V.F. IX Mezhdunarodnyy Baltiyskiy morskoy forum – in Russ. (IX International Baltic Sea Forum), 2022, pp. 563–591.
13. Rasporyazhenie Gubernatora Kaliningradskoy oblasti (Decree of the Governor of the Kaliningrad Region) No. 41-r dated 22.08.2022.
14. Volkov E.P. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Power Engineering), 2019, No. 2, pp. 3–16.
15. Vorotnitskiy V.E. Energoekspert – in Russ. (Energy Expert), 2023, No. 2 (86), pp. 28–33.
16. Galkin Yu.V. et al. Prognoz razvitiya energetiki mira i Rossii 2024 (World and Russian Energy Development Forecast 2024). M.: INEI RAN, 2024, 208 p.
17. Rasporyazhenie Pravitel'stva Rossiyskoy Federatsi (Decree of the Government of the Russian Federation) No. 1523-r dated 09.06.2020.
18. Ukaz Prezidenta Rossiyskoy Federatsii (Decree of the President of the Russian Federation) No. 216 dated 13.05.2019).
19. Vasil’ev Yu.S. et al. Otsenki resursov vozobnovlyaemyh istochnikov energii v Rossii (Estimates of Renewable Energy Resources in Russia). SPb.: Izd-vo Politehnicheskogo universiteta, 2008, 250 p.
20. Kotsar’ G.V. Promyshlennaya energetika – in Russ. (Industrial Power Engineering), 2022, No. 8, pp. 49–59.
21. Ragulina I.R. Bioenergeticheskiy potentsial Kaliningradskoy oblasti: avtoreferat dis. … kand. geogr. nauk (Bioenergy Potential of the Kaliningrad region: Abstract … Cand. Sci. (Geogr.)). Kaliningrad, 2007, 24 p.
22. Bezrukih P.P., Bezrukih P.P. (Jr.), Gribkov S.V. Vetro-energetika: Spravochno-metodicheskoe izdanie (Wind Energy: Refe-rence and Methodological Edition). M.: Intehenergo-Izdat, 2014, 304 p.
23. Beley V.F., Zadorozhnyy A.O. V Mezhdunarodnyy Baltiyskiy morskoy forum – in Russ. (V International Baltic Sea Forum), 2017, pp. 250–256.
24. Popel’ O.S. et al. Atlas resursov solnechnoy energii na territorii Rossii: nauchnoe izdanie (Atlas of Solar Energy Resources in Russia: Scientific Publication). M.: OIVT RAN, 2010, 54 p.
25. Global Solar Atlas 2.0 [Electron. resource], URL: https://globalsolaratlas.info/ (Access on 28.03.2025).
26. Ellison J.F. et al. The Benefits of Grid-Scale Storage on Oahu. – Journal of Energy Storage, 2018, vol. 15, pp. 336–344, DOI: 10.1016/j.est.2017.12.009.
27. Dzedik V.A., Usacheva I.V., Motkova A.A. Energetika i tsifrovizatsiya: teoriya i praktika transformatsii: materialy II Mezhdunarodnoy nauchno-prakticheskoy konferentsii – in Russ. (Energy and Digitalization: Theory and Practice of Transformation: Proceedings of the II International Scientific and Practical Conference), 2023, pp. 18–27.
28. Rekioua D. Energy Storage Systems for Photovoltaic and Wind Systems: A Review. – Energies, 2023, vol. 16, No. 9, DOI: 10.3390/en16093893.
29. World’s Largest Sodium-Ion BESS Comes Online in China as It Seeks to Diversify Away from Lithium [Electron. resource], URL: https://www.energy-storage.news/first-half-world-largest-200mwh-sodium-ion-project-comes-online-china (Access on 28.03.2025).
30. China’s First High-Capacity Sodium-Ion Battery Storage Station Is Launched [Electron. resource], URL: https://www.globaltimes.cn/page/202405/1312098.shtml (Access on 28.03.2025).
31. Nayak P.K. et al. From Lithium‐Ion to Sodium‐Ion Batteries: Advantages, Challenges, and Surprises. – Angewandte Chemie International Edition, 2018, vol. 57, No. 1, pp. 102–120, DOI: 10.1002/anie.201703772.
32. Quandyq Q.M. Seyfullinskie chteniya – 17: Sovremennaya agrarnaya nauka: tsifrovaya transformatsiya – in Russ. (Seifullin Readings – 17: Modern Agricultural Science: Digital Transformation), 2021, vol. 1, iss. 3, pp. 35–38.
33. Chayambuka K. et al. From Li‐Ion Batteries toward Na‐Ion Chemistries: Challenges and Opportunities. –Advanced Energy Materials, 2020, vol. 10, No. 38, DOI: 10.1002/aenm.202001310.
34. Hwang J.-Y., Myung S.-T., Sun Y.-K. Sodium-Ion Batteries: Present and Future. – Chemical Society Reviews, 2017, vol. 46, No. 12, pp. 3529–3614, DOI: 10.1039/C6CS00776G.
35. Rudola A., Wright C.J., Barker J. Reviewing the Safe Shipping of Lithium-Ion and Sodium-Ion Cells: A Materials Chemistry Perspective. – Energy Material Advances, 2021, vol. 2021, DOI: 10.34133/2021/9798460.
36. «Rosatom» pokazal batarei, kotorye budut izgotavlivat’ na gigafabrike v Nemane (Rosatom has shown batteries that will be manufactured at a gigafactory in Neman) [Electron. resource], URL: https://klops.ru/kaliningrad/2024-03-26/292140-rosatom-pokazal-batarei-kotorye-budut-izgotavlivat-na-gigafabrike-v-nemane-foto (Access on 28.03.2025).
37. Edwards P.P., Dobson P.J. Remarks on the Safety of Lithium-Ion Batteries for Large-Scale Battery Energy Storage Systems (BESS) in the UK. – Fire Technology, 2024, DOI: 10.1007/s10694-024-01682-x.
38. Beley V.F., Rzay A.A. Vestnik molodezhnoy nauki – in Russ. (Bulletin of Youth Science), 2020, No. 2 (24), pp. 13–21.
39. Sinyugin V.Yu., Magruk V.I., Rodionov V.G. Gidroakkumu-liruyushchie elektrostantsii v sovremennoy elektroenergetike (Pumped Storage Power Plants in the Modern Electric Power Industry). M.: ENAS, 2008, 352 p.
40. Al-Masri H.M.K. et al. Optimal Coordination of Wind Power and Pumped Hydro Energy Storage. – Energies, 2019, vol. 22, No. 12, DOI: 10.3390/en12224387.
41. Tong W. et al. Solid Gravity Energy Storage: A Review. – Journal of Energy Storage, 2022, vol. 53, DOI: 10.1016/j.est.2022.105226.
42. Energy Vault Project – China, Rudong [Electron. resource], URL: https://www.energyvault.com/projects/cn-rudong (Access on 28.03.2025).
43. Normirovannaya stoimost’ hraneniya energii dlya tverdotel’-noy akkumuliruyushchey elektrostantsii okazalas’ nizhe, chem dlya GAES i litiy-iona (The Normalized Cost of Energy Storage for a Solid-State Storage Power Plant Turned out to Be Lower Than for PSPPs and Lithium-Ion) [Electron. resource], URL: https://www.atomic-energy.ru/news/2021/05/18/113951 (Access on 28.03.2025).
44. Botha C.D., Kamper M.J. Capability Study of Dry Gravity Energy Storage. – Journal of Energy Storage, 2019, vol. 23, pp. 159–174, DOI: 10.1016/j.est.2019.03.015.
45. Yatoo A.M. et al. Global Perspective of Municipal Solid Waste and Landfill Leachate: Generation, Composition, Eco-Toxicity, and Sustainable Management Strategies. – Environmental Science and Pollution Research, 2024, vol. 31, No. 16, DOI: 10.1007/s11356-024-32669-4.
46. Tugov A.N. Municipal Solid Wastes-to-Energy Conversion: Global and Domestic Experience (Review). – Thermal Engineering, 2022, vol. 69, No. 12. pp. 909–924, DOI: 10.1134/S0040601522120084.
47. CEWEP Energy Efficiency Report III (Status 2007–2010) [Electron. resource], URL: https://www.cewep.eu/cewep-energy-efficiency-reports/ (Access on 28.03.2025).
48. Hulgaard T. Integrating waste-to-energy in Copenhagen, Denmark, Proceedings of the Institution of Civil Engineers. – Civil Engineering, 2018, vol. 171, No. 5, pp. 3–10, DOI: 10.1680/jcien.17.00042.
49. O sostoyanii i ob ohrane okruzhayushchey sredy Rossiyskoy Federatsii v 2023 godu (On the State and Protection of the Environment of the Russian Federation in 2023) [Electron. resource], URL: https://www.mnr.gov.ru/docs/o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii/gosudarstvennyy_doklad_o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii_v_2023_(Access on 28.03.2025).
50. Tugov A.N. Tverdye bytovye othody – in Russ. (Solid House-hold Waste), 2015, No. 8 (110), pp. 26–32.
51. Podhod k othodam: chto proishodit s kaliningradskim muso-rom posle zakrytiya poloviny poligonov TKO (Waste Management Approach: What Happens to Kaliningrad Garbage after Half of MSW Landfills Are Closed) [Electron. resource], URL: https://fedpress.ru/article/3330381 (Access on 28.03.2025).
52. Statistics Finland. Production of Electricity and Heat 2023 [Electron. resource], URL: https://stat.fi/en/statistics/salatuo (Access on 28.03.2025)