Численное моделирование высокочастотного плазмотрона и высокочастотного генератора с учетом их взаимного влияния

  • Никита Владимирович Образцов
  • Юрий Васильевич Мурашов
  • Наталья Константиновна Куракина
  • Руслан Игоревич Жилиготов
Ключевые слова: высокочастотный плазмотрон, высокочастотный генератор, моделирование, Comsol Multiphysics, термическая плазма, плазменный поток

Аннотация

При разработке электротехнического плазменного оборудования важным вопросом является сопряжение источника питания и нелинейной нагрузки (в данном случае высокочастотного плазмотрона). На работу источника питания влияют следующие факторы: способ подачи газа в плазмотрон, режим работы, расход и состав газа. Источник питания может оказывать влияние на характер потока плазмы в плазмотроне через вольт-амперные характеристики. Статья посвящена изучению процессов в электротехнологической установке высокочастотного плазмотрона и выявлению закономерностей, влияющих на формирование плазменного потока. Проведено численное моделирование высокочастотного плазмотрона и источника питания с учетом их взаимного влияния. Рассмотрена двухмерная осесимметричная модель работы плазмотрона с использованием газа аргон в качестве плазмообразующего. Течение газа описывается турбулентной моделью k–ε. Предложена схема замещения источника питания для реализации в Comsol Multiphysics. Показана возможность сопряжения источника питания и плазмотрона в одной модели. Получены распределения скорости, температуры и электрических параметров во времени. Предложенный подход позволяет анализировать чувствительность электротехнологических процессов, протекающих в высокочастотном плазмотроне, к электрическим параметрам источника питания. Работа является первой в серии работ по моделированию системы «источник питания–плазмотрон».

Биографии авторов

Никита Владимирович Образцов

кандидат техн. наук, доцент высшей школы электроэнергетических систем, Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия.

Юрий Васильевич Мурашов

кандидат техн. наук, доцент высшей школы электроэнергетических систем, Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия.

Наталья Константиновна Куракина

кандидат техн. наук, доцент высшей школы электроэнергетических систем, Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия.

Руслан Игоревич Жилиготов

кандидат техн. наук, доцент высшей школы электроэнергетических систем, Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия.

Литература

1. Wang Y. et al. Spheroidization of nd-fe-B Powders by RF Induction Plasma Processing. – Rare Metal Materials and Engineering, 2013, 42(9), pp. 1810–1813, DOI: 10.1016/s1875-5372(14)60010-2.
2. Le Borgne V. et al. Structural and Photoluminescence Properties of Silicon Nanowires Extracted by Means of a Centrifugation Process from Plasma Torch Synthesized Silicon Nanopowder. – Nanotechnology, 2017, 28(28), DOI: 10.1088/1361-6528/aa7769.
3. Harbec D. et al. Induction Plasma Synthesis of Nanometric Spheroidized Glass Powder for Use in Cementitious Materials. – Powder Technology, 2011, 214(3), pp. 356–364, DOI: 10.1016/j.powtec.2011.08.031.
4. Fazekas P. et al. Decomposition of Chlorobenzene by Thermal Plasma Processing. – Plasma Chemistry and Plasma Processing, 2013, 33, pp. 765–778, DOI: 10.1007/s11090-013-9459-3.
5. Youbi G.K. et al. Inductively Coupled Plasma Torch Efficiency at Atmospheric Pressure for Organo-Chlorine Liquid Waste Removal: Chloroform Destruction in Oxidative Conditions. – Journal of Hazardous Materials, 2013, 244–245, pp. 171–179, DOI: 10.1016/j.jhazmat.2012.10.072.
6. Matveev I.B., Serbin S.I. Synthesis of Nitrogen Oxides in ICP/RF Plasma. – IEEE Transactions on Plasma Science, 2019, 47(1), pp. 47–51, DOI: 10.1109/TPS.2018.2877453.
7. Massadeh M. et al. Analysis of Selected Heavy Metals in Tap Water by Inductively Coupled Plasma-Optical Emission Spectrometry after Pre-Concentration Using Chelex-100 Ion Exchange Resin. – Water, Air, and Soil Pollution, 2020, 231(5), DOI:10.1007/s11270-020-04555-5.
8. He D. et al. A Practical Method for Measuring High Precision Calcium Isotope Ratios without Chemical Purification for Calcium Carbonate Samples by Multiple Collectors Inductively Coupled Plasma Mass Spectrometry. – Chemical Geology, 2019, 514, pp. 105–111.
9. Nguyen-Kuok S. Theory of Low-Temperature Plasma Physics, – Springer Series on Atomic, Optical, and Plasma Physics. Springer, 2017, 495 p, DOI:10.1007/978-3-319-43721-7.
10. Matveev I., Matveyeva S., Zverev S. Experimental Investigations of the APT-60 High-Pressure Inductively Coupled Plasma System on Different Plasma Gases. – IEEE Transactions on Plasma Science, 2014, 42(12), DOI: 10.1109/TPS.2014.2362414.
11. Karnoukhov A.E. et al. Studying the Effect of RF-Plasma Treatment on the Indicators of Adhesion of Inorganic Fibers to the Polymeric Binder. – Journal of Physics: Conference Series, 2019, 1328(1), DOI: 10.1088/1742-6596/1328/1/012041.
12. Freeman M.P., Chase J.D. Energy-Transfer Mechanism and Typical Operation Characteristics for the Thermal RF Plasma Generator. – Journal of Applied Physics, 1968, 39(1), pp.180–193, DOI:10.1063/1.1655729.
13. Eckert H.U. Analysis of Thermal Induction Plasmas Dominated by Radial Conduction Losses. – Journal of Applied Physics, 1970, 41(4), pp. 1520–1528, DOI:10.1063/1.1659067.
14. Eckert H.U. Analytical Treatment of Radiation and Conduction Losses in Thermal Induction Plasmas. – Journal of Applied Physics, 1970, 41(4), pp. 1529–1537, DOI:10.1063/1.1659068.
15. Eckert H.U. Analysis of Thermal Induction Plasmas between Coaxial Cylinders. – Journal of Applied Physics, 1972, 43(1), pp. 46–52, DOI:10.1063/1.1660834.
16. Eckert H.U. Two‐Dimensional Analysis of Thermal Induction Plasmas in Finite Cylinders. – Journal of Applied Physics, 1977, 48(4), pp. 1467–1472, DOI:10.1063/1.323862.
17. Bai L. et al. Modeling and Selection of RF Thermal Plasma Hot-Wall Torch for Large-Scale Production of Nanopowders. – Materials, 2019, 12(13), DOI: 10.3390/ma12132141.
18. Kornev R.A., Shabarova L.V., Shishkin A.I. Gas-Dynamic and Thermal Processes in a High-Frequency Induction Plasma Torch with Tangential Stabilization of the Gas Flow. – Theoretical Foundations of Chemical Engineering, 2017, 51(5), pp. 736–741, DOI: 10.1134/S0040579517050323.
19. Frolov V., Ivanov D., Sosnin V. Numerical Simulation of High-Power RF–RF Hybrid Plasma Torch. – IOP Conference Series Materials Science and Engineering, 2019, 643(1), DOI: 10.1088/1757-899X/643/1/012071.
20. Rehmet C., Cao T., Cheng Y. Numerical Study of Si Nanoparticles Formation by SiCl4 Hydrogenation in RF Plasma. – Plasma Sources Science and Technology, 2016, 25(2), DOI: 10.1088/0963-0252/25/2/025011.
21. Yu M. et al. Numerical Simulation on High Frequency Discharge of Chemical Nonequilibrium Argon Inductively Coupled Plasma. – Journal of Physics: Conference Series, 2019, 1300(1), DOI: 10.1088/1742-6596/1300/1/012063.
22. Grishin Yu.M., Long M. Numerical Simulation of the Argon-Hydrogen Plasma Flow in the Channel of RF Inductively Coupled Plasma Torch. – Journal of Physics: Conference Series, 2017, 891(1), 012302, DOI: 10.1088/1742-6596/891/1/012302.
23. Tong J.B. et al. Numerical Simulation and Prediction of Radio Frequency Inductively Coupled Plasma Spheroidization. – Applied Thermal Engineering, 2016, 100, pp. 1198–1206. DOI: 10.1016/j.applthermaleng.2016.02.108.
24. Xin Q. et al. Effects of Conical Nozzle and Its Geometry on Properties of an Inductively Coupled Plasma Jet Used for Optical Fabrication. – Applied Thermal Engineering, 2018, 128, pp. 785–794, DOI: 10.1016/j.applthermaleng.2017.07.131.
25. Alavi S., Mostaghimi J. A Novel ICP Torch with Conical Geometry. – Plasma Chemistry and Plasma Processing. 2019, 39(2), pp. 359–376, DOI: 10.1007/s11090-018-9948-5.
26. Ivanov D.V., Zverev S.G. Mathematical Simulation of Processes in ICP/RF Plasma Torch for Plasma Chemical Reactions. – IEEE Transactions on Plasma Science, 2017, 45 (12), pp. 3125–3129, DOI: 10.1109/TPS.2017.2773140.
27. Ivanov D.V., Zverev S.G. Mathematical Simulation of Processes in Air ICP/RF Plasma Torch for High-Power Applications. – IEEE Transactions on Plasma Science, 2020, 48 (2), pp. 338–342, DOI: 10.1109/TPS.2019.2957676.
28. Matveev I.B., Serbin S.I. A Multitorch RF Plasma System as a Way to Improve Temperature Uniformity for High-Power Applications. – IEEE Transactions on Plasma Science, 2020, 48 (2), pp. 332–337, DOI: 10.1109/TPS.2019.2950260.
29. Shigeta M. Time-Dependent 3D Simulation of an Argon RF Inductively Coupled Thermal Plasma. – Plasma Sources Science and Technology, 2012, 21(5), DOI: 10.1088/0963-0252/21/5/055029.
30. Shigeta M. Turbulence Modelling of Thermal Plasma Flows. – Journal of Physics D Applied Physics, 2016, 49(49), DOI: 10.1088/0022-3727/49/49/493001.
---
Работа выполнена при поддержке Российского научного фонда (грант № 22-29-20223) и Санкт-Петербургского государственного автономного учреждения «Фонд поддержки научной, научно-технической, инновационной деятельности» (соглашение №64/2022)
#
1. Wang Y. et al. Spheroidization of nd-fe-B Powders by RF Induction Plasma Processing. – Rare Metal Materials and Engineering, 2013, 42(9), pp. 1810–1813, DOI: 10.1016/s1875-5372(14)60010-2.
2. Le Borgne V. et all. Structural and Photoluminescence Properties of Silicon Nanowires Extracted by Means of a Centrifugation Process from Plasma Torch Synthesized Silicon Nanopowder. – Nanotechnology, 2017, 28(28), DOI: 10.1088/1361-6528/aa7769.
3. Harbec D. et al. Induction Plasma Synthesis of Nanometric Spheroidized Glass Powder for Use in Cementitious Materials. – Powder Technology, 2011, 214(3), pp. 356–364, DOI: 10.1016/j.powtec.2011.08.031.
4. Fazekas P. et al. Decomposition of Chlorobenzene by Thermal Plasma Processing. – Plasma Chemistry and Plasma Processing, 2013, 33, pp. 765–778, DOI: 10.1007/s11090-013-9459-3.
5. Youbi G.K. et al. Inductively Coupled Plasma Torch Efficiency at Atmospheric Pressure for Organo-Chlorine Liquid Waste Removal: Chloroform Destruction in Oxidative Conditions. – Journal of Hazardous Materials, 2013, 244–245, pp. 171–179, DOI: 10.1016/j.jhazmat.2012.10.072.
6. Matveev I.B., Serbin S.I. Synthesis of Nitrogen Oxides in ICP/RF Plasma. – IEEE Transactions on Plasma Science, 2019, 47(1), pp. 47–51, DOI: 10.1109/TPS.2018.2877453.
7. Massadeh M. et al. Analysis of Selected Heavy Metals in Tap Water by Inductively Coupled Plasma-Optical Emission Spectrometry after Pre-Concentration Using Chelex-100 Ion Exchange Resin. – Water, Air, and Soil Pollution, 2020, 231(5), DOI:10.1007/s11270-020-04555-5.
8. He D. et al. A Practical Method for Measuring High Precision Calcium Isotope Ratios without Chemical Purification for Calcium Carbonate Samples by Multiple Collectors Inductively Coupled Plasma Mass Spectrometry. – Chemical Geology, 2019, 514, pp. 105–111.
9. Nguyen-Kuok S. Theory of Low-Temperature Plasma Physics, – Springer Series on Atomic, Optical, and Plasma Physics. Springer, 2017, 495 p, DOI:10.1007/978-3-319-43721-7.
10. Matveev I., Matveyeva S., Zverev S. Experimental Investigations of the APT-60 High-Pressure Inductively Coupled Plasma System on Different Plasma Gases. – IEEE Transactions on Plasma Science, 2014, 42(12), DOI: 10.1109/TPS.2014.2362414.
11. Karnoukhov A.E. et al. Studying the Effect of RF-Plasma Treatment on the Indicators of Adhesion of Inorganic Fibers to the Polymeric Binder. – Journal of Physics: Conference Series, 2019, 1328(1), DOI: 10.1088/1742-6596/1328/1/012041.
12. Freeman M.P., Chase J.D. Energy-Transfer Mechanism and Typical Operation Characteristics for the Thermal RF Plasma Generator. – Journal of Applied Physics, 1968, 39(1), pp.180–193, DOI:10.1063/1.1655729.
13. Eckert H.U. Analysis of Thermal Induction Plasmas Dominated by Radial Conduction Losses. – Journal of Applied Physics, 1970, 41(4), pp. 1520–1528, DOI:10.1063/1.1659067.
14. Eckert H.U. Analytical Treatment of Radiation and Conduction Losses in Thermal Induction Plasmas. – Journal of Applied Physics, 1970, 41(4), pp. 1529–1537, DOI:10.1063/1.1659068.
15. Eckert H.U. Analysis of Thermal Induction Plasmas between Coaxial Cylinders. – Journal of Applied Physics, 1972, 43(1), pp. 46–52, DOI:10.1063/1.1660834.
16. Eckert H.U. Two-Dimensional Analysis of Thermal Induction Plasmas in Finite Cylinders. – Journal of Applied Physics, 1977, 48(4), pp. 1467–1472, DOI:10.1063/1.323862.
17. Bai L. et al. Modeling and Selection of RF Thermal Plasma Hot-Wall Torch for Large-Scale Production of Nanopowders. – Materials, 2019, 12(13), DOI: 10.3390/ma12132141.
18. Kornev R.A., Shabarova L.V., Shishkin A.I. Gas-Dynamic and Thermal Processes in a High-Frequency Induction Plasma Torch with Tangential Stabilization of the Gas Flow. – Theoretical Foundations of Chemical Engineering, 2017, 51(5), pp. 736–741, DOI: 10.1134/S0040579517050323.
19. Frolov V., Ivanov D., Sosnin V. Numerical Simulation of High-Power RF–RF Hybrid Plasma Torch. – IOP Conference Series Materials Science and Engineering, 2019, 643(1), DOI: 10.1088/1757-899X/643/1/012071.
20. Rehmet C., Cao T., Cheng Y. Numerical Study of Si Nanoparticles Formation by SiCl4 Hydrogenation in RF Plasma. – Plasma Sources Science and Technology, 2016, 25(2), DOI: 10.1088/ 0963-0252/25/2/025011.
21. Yu M. et al. Numerical Simulation on High Frequency Discharge of Chemical Nonequilibrium Argon Inductively Coupled Plasma. – Journal of Physics: Conference Series, 2019, 1300(1), DOI: 10.1088/1742-6596/1300/1/012063.
22. Grishin Yu.M., Long M. Numerical Simulation of the Argon-Hydrogen Plasma Flow in the Channel of RF Inductively Coupled Plasma Torch. – Journal of Physics: Conference Series, 2017, 891(1), 012302, DOI: 10.1088/1742-6596/891/1/012302.
23. Tong J.B. et al. Numerical Simulation and Prediction of Radio Frequency Inductively Coupled Plasma Spheroidization. – Applied Thermal Engineering, 2016, 100, pp. 1198–1206. DOI: 10.1016/j.applthermaleng.2016.02.108.
24. Xin Q. et al. Effects of Conical Nozzle and Its Geometry on Properties of an Inductively Coupled Plasma Jet Used for Optical Fabrication. – Applied Thermal Engineering, 2018, 128, pp. 785–794, DOI: 10.1016/j.applthermaleng.2017.07.131.
25. Alavi S., Mostaghimi J. A Novel ICP Torch with Conical Geometry. – Plasma Chemistry and Plasma Processing. 2019, 39(2), pp. 359–376, DOI: 10.1007/s11090-018-9948-5.
26. Ivanov D.V., Zverev S.G. Mathematical Simulation of Processes in ICP/RF Plasma Torch for Plasma Chemical Reactions. – IEEE Transactions on Plasma Science, 2017, 45 (12), pp. 3125–3129, DOI: 10.1109/TPS.2017.2773140.
27. Ivanov D.V., Zverev S.G. Mathematical Simulation of Pro-cesses in Air ICP/RF Plasma Torch for High-Power Applications. – IEEE Transactions on Plasma Science, 2020, 48 (2), pp. 338–342, DOI: 10.1109/TPS.2019.2957676.
28. Matveev I.B., Serbin S.I. A Multitorch RF Plasma System as a Way to Improve Temperature Uniformity for High-Power Applications. – IEEE Transactions on Plasma Science, 2020, 48 (2), pp. 332–337, DOI: 10.1109/TPS.2019.2950260.
29. Shigeta M. Time-Dependent 3D Simulation of an Argon RF Inductively Coupled Thermal Plasma. – Plasma Sources Science and Technology, 2012, 21(5), DOI: 10.1088/0963-0252/21/5/055029.
30. Shigeta M. Turbulence Modelling of Thermal Plasma Flows. – Journal of Physics D Applied Physics, 2016, 49(49), DOI: 10.1088/0022-3727/49/49/493001.
---
The work was carried out with the support of the Russian Science Foundation (grant No. 22-29-20223) and the St. Petersburg State Autonomous Institution "Fund for Support of Scientific, Scientific-Technical, Innovative Activities" (Agreement No. 64/2022)
Опубликован
2022-12-19
Раздел
Статьи