Numerical Simulation of an ICP Plasma Torch and an HF Generator Taking into Account Their Mutual Influence

  • Nikita V. OBRAZTSOV
  • Iurii V. MURASHOV
  • Natalia K. KURAKINA
  • Ruslan I. ZHILIGOTOV
Keywords: ICP plasma torch, high-frequency generator, simulation, Comsol Multiphysics, thermal plasma, plasma flow

Abstract

In developing electrotechnical plasma equipment, one of the most important issues is the coupling of a power source and a nonlinear load (in this case, a ICP plasma torch). The following factors affect the power supply operation: the method of gas supply to the plasma torch, operation mode, gas consumption and composition. The power supply can influence the plasma flow pattern in the plasma torch through the volt-ampere characteristics. The article addresses matters concerned with studying the processes in the ICP plasma torch electrical technology installation and revealing regularities influencing the plasma flow generation. An ICP plasma torch and its power supply are numerically simulated with taking their mutual influence into account. A 2D axisymmetric model of the operation of a plasma torch that uses argon as a plasma-forming gas is considered. The gas flow is described by the turbulent k-ε model. A power supply equivalent circuit is proposed for its implementation in the Comsol Multiphysics software package. The possibility of coupling a power source and a plasma torch in one model is shown. The distributions of velocity, temperature, and electrical parameters over time are obtained. By using the proposed approach, it is possible to analyze the sensitivity of the electrotechnological processes in the ICP plasma torch to the power source electrical parameters. This article is the first one in a series of studies on simulating the "power supply-plasma torch" system.

Author Biographies

Nikita V. OBRAZTSOV

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Docent at the Higher School of Electric Power Systems, Cand. Sci. (Eng.).

Iurii V. MURASHOV

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Docent at the Higher School of Electric Power Systems, Cand. Sci. (Eng.).

Natalia K. KURAKINA

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Docent at the Higher School of Electric Power Systems, Cand. Sci. (Eng.).

Ruslan I. ZHILIGOTOV

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Docent at the Higher School of Electric Power Systems, Cand. Sci. (Eng.).

References

1. Wang Y. et al. Spheroidization of nd-fe-B Powders by RF Induction Plasma Processing. – Rare Metal Materials and Engineering, 2013, 42(9), pp. 1810–1813, DOI: 10.1016/s1875-5372(14)60010-2.
2. Le Borgne V. et al. Structural and Photoluminescence Properties of Silicon Nanowires Extracted by Means of a Centrifugation Process from Plasma Torch Synthesized Silicon Nanopowder. – Nanotechnology, 2017, 28(28), DOI: 10.1088/1361-6528/aa7769.
3. Harbec D. et al. Induction Plasma Synthesis of Nanometric Spheroidized Glass Powder for Use in Cementitious Materials. – Powder Technology, 2011, 214(3), pp. 356–364, DOI: 10.1016/j.powtec.2011.08.031.
4. Fazekas P. et al. Decomposition of Chlorobenzene by Thermal Plasma Processing. – Plasma Chemistry and Plasma Processing, 2013, 33, pp. 765–778, DOI: 10.1007/s11090-013-9459-3.
5. Youbi G.K. et al. Inductively Coupled Plasma Torch Efficiency at Atmospheric Pressure for Organo-Chlorine Liquid Waste Removal: Chloroform Destruction in Oxidative Conditions. – Journal of Hazardous Materials, 2013, 244–245, pp. 171–179, DOI: 10.1016/j.jhazmat.2012.10.072.
6. Matveev I.B., Serbin S.I. Synthesis of Nitrogen Oxides in ICP/RF Plasma. – IEEE Transactions on Plasma Science, 2019, 47(1), pp. 47–51, DOI: 10.1109/TPS.2018.2877453.
7. Massadeh M. et al. Analysis of Selected Heavy Metals in Tap Water by Inductively Coupled Plasma-Optical Emission Spectrometry after Pre-Concentration Using Chelex-100 Ion Exchange Resin. – Water, Air, and Soil Pollution, 2020, 231(5), DOI:10.1007/s11270-020-04555-5.
8. He D. et al. A Practical Method for Measuring High Precision Calcium Isotope Ratios without Chemical Purification for Calcium Carbonate Samples by Multiple Collectors Inductively Coupled Plasma Mass Spectrometry. – Chemical Geology, 2019, 514, pp. 105–111.
9. Nguyen-Kuok S. Theory of Low-Temperature Plasma Physics, – Springer Series on Atomic, Optical, and Plasma Physics. Springer, 2017, 495 p, DOI:10.1007/978-3-319-43721-7.
10. Matveev I., Matveyeva S., Zverev S. Experimental Investigations of the APT-60 High-Pressure Inductively Coupled Plasma System on Different Plasma Gases. – IEEE Transactions on Plasma Science, 2014, 42(12), DOI: 10.1109/TPS.2014.2362414.
11. Karnoukhov A.E. et al. Studying the Effect of RF-Plasma Treatment on the Indicators of Adhesion of Inorganic Fibers to the Polymeric Binder. – Journal of Physics: Conference Series, 2019, 1328(1), DOI: 10.1088/1742-6596/1328/1/012041.
12. Freeman M.P., Chase J.D. Energy-Transfer Mechanism and Typical Operation Characteristics for the Thermal RF Plasma Generator. – Journal of Applied Physics, 1968, 39(1), pp.180–193, DOI:10.1063/1.1655729.
13. Eckert H.U. Analysis of Thermal Induction Plasmas Dominated by Radial Conduction Losses. – Journal of Applied Physics, 1970, 41(4), pp. 1520–1528, DOI:10.1063/1.1659067.
14. Eckert H.U. Analytical Treatment of Radiation and Conduction Losses in Thermal Induction Plasmas. – Journal of Applied Physics, 1970, 41(4), pp. 1529–1537, DOI:10.1063/1.1659068.
15. Eckert H.U. Analysis of Thermal Induction Plasmas between Coaxial Cylinders. – Journal of Applied Physics, 1972, 43(1), pp. 46–52, DOI:10.1063/1.1660834.
16. Eckert H.U. Two‐Dimensional Analysis of Thermal Induction Plasmas in Finite Cylinders. – Journal of Applied Physics, 1977, 48(4), pp. 1467–1472, DOI:10.1063/1.323862.
17. Bai L. et al. Modeling and Selection of RF Thermal Plasma Hot-Wall Torch for Large-Scale Production of Nanopowders. – Materials, 2019, 12(13), DOI: 10.3390/ma12132141.
18. Kornev R.A., Shabarova L.V., Shishkin A.I. Gas-Dynamic and Thermal Processes in a High-Frequency Induction Plasma Torch with Tangential Stabilization of the Gas Flow. – Theoretical Foundations of Chemical Engineering, 2017, 51(5), pp. 736–741, DOI: 10.1134/S0040579517050323.
19. Frolov V., Ivanov D., Sosnin V. Numerical Simulation of High-Power RF–RF Hybrid Plasma Torch. – IOP Conference Series Materials Science and Engineering, 2019, 643(1), DOI: 10.1088/1757-899X/643/1/012071.
20. Rehmet C., Cao T., Cheng Y. Numerical Study of Si Nanoparticles Formation by SiCl4 Hydrogenation in RF Plasma. – Plasma Sources Science and Technology, 2016, 25(2), DOI: 10.1088/0963-0252/25/2/025011.
21. Yu M. et al. Numerical Simulation on High Frequency Discharge of Chemical Nonequilibrium Argon Inductively Coupled Plasma. – Journal of Physics: Conference Series, 2019, 1300(1), DOI: 10.1088/1742-6596/1300/1/012063.
22. Grishin Yu.M., Long M. Numerical Simulation of the Argon-Hydrogen Plasma Flow in the Channel of RF Inductively Coupled Plasma Torch. – Journal of Physics: Conference Series, 2017, 891(1), 012302, DOI: 10.1088/1742-6596/891/1/012302.
23. Tong J.B. et al. Numerical Simulation and Prediction of Radio Frequency Inductively Coupled Plasma Spheroidization. – Applied Thermal Engineering, 2016, 100, pp. 1198–1206. DOI: 10.1016/j.applthermaleng.2016.02.108.
24. Xin Q. et al. Effects of Conical Nozzle and Its Geometry on Properties of an Inductively Coupled Plasma Jet Used for Optical Fabrication. – Applied Thermal Engineering, 2018, 128, pp. 785–794, DOI: 10.1016/j.applthermaleng.2017.07.131.
25. Alavi S., Mostaghimi J. A Novel ICP Torch with Conical Geometry. – Plasma Chemistry and Plasma Processing. 2019, 39(2), pp. 359–376, DOI: 10.1007/s11090-018-9948-5.
26. Ivanov D.V., Zverev S.G. Mathematical Simulation of Processes in ICP/RF Plasma Torch for Plasma Chemical Reactions. – IEEE Transactions on Plasma Science, 2017, 45 (12), pp. 3125–3129, DOI: 10.1109/TPS.2017.2773140.
27. Ivanov D.V., Zverev S.G. Mathematical Simulation of Processes in Air ICP/RF Plasma Torch for High-Power Applications. – IEEE Transactions on Plasma Science, 2020, 48 (2), pp. 338–342, DOI: 10.1109/TPS.2019.2957676.
28. Matveev I.B., Serbin S.I. A Multitorch RF Plasma System as a Way to Improve Temperature Uniformity for High-Power Applications. – IEEE Transactions on Plasma Science, 2020, 48 (2), pp. 332–337, DOI: 10.1109/TPS.2019.2950260.
29. Shigeta M. Time-Dependent 3D Simulation of an Argon RF Inductively Coupled Thermal Plasma. – Plasma Sources Science and Technology, 2012, 21(5), DOI: 10.1088/0963-0252/21/5/055029.
30. Shigeta M. Turbulence Modelling of Thermal Plasma Flows. – Journal of Physics D Applied Physics, 2016, 49(49), DOI: 10.1088/0022-3727/49/49/493001.
---
Работа выполнена при поддержке Российского научного фонда (грант № 22-29-20223) и Санкт-Петербургского государственного автономного учреждения «Фонд поддержки научной, научно-технической, инновационной деятельности» (соглашение №64/2022)
#
1. Wang Y. et al. Spheroidization of nd-fe-B Powders by RF Induction Plasma Processing. – Rare Metal Materials and Engineering, 2013, 42(9), pp. 1810–1813, DOI: 10.1016/s1875-5372(14)60010-2.
2. Le Borgne V. et all. Structural and Photoluminescence Properties of Silicon Nanowires Extracted by Means of a Centrifugation Process from Plasma Torch Synthesized Silicon Nanopowder. – Nanotechnology, 2017, 28(28), DOI: 10.1088/1361-6528/aa7769.
3. Harbec D. et al. Induction Plasma Synthesis of Nanometric Spheroidized Glass Powder for Use in Cementitious Materials. – Powder Technology, 2011, 214(3), pp. 356–364, DOI: 10.1016/j.powtec.2011.08.031.
4. Fazekas P. et al. Decomposition of Chlorobenzene by Thermal Plasma Processing. – Plasma Chemistry and Plasma Processing, 2013, 33, pp. 765–778, DOI: 10.1007/s11090-013-9459-3.
5. Youbi G.K. et al. Inductively Coupled Plasma Torch Efficiency at Atmospheric Pressure for Organo-Chlorine Liquid Waste Removal: Chloroform Destruction in Oxidative Conditions. – Journal of Hazardous Materials, 2013, 244–245, pp. 171–179, DOI: 10.1016/j.jhazmat.2012.10.072.
6. Matveev I.B., Serbin S.I. Synthesis of Nitrogen Oxides in ICP/RF Plasma. – IEEE Transactions on Plasma Science, 2019, 47(1), pp. 47–51, DOI: 10.1109/TPS.2018.2877453.
7. Massadeh M. et al. Analysis of Selected Heavy Metals in Tap Water by Inductively Coupled Plasma-Optical Emission Spectrometry after Pre-Concentration Using Chelex-100 Ion Exchange Resin. – Water, Air, and Soil Pollution, 2020, 231(5), DOI:10.1007/s11270-020-04555-5.
8. He D. et al. A Practical Method for Measuring High Precision Calcium Isotope Ratios without Chemical Purification for Calcium Carbonate Samples by Multiple Collectors Inductively Coupled Plasma Mass Spectrometry. – Chemical Geology, 2019, 514, pp. 105–111.
9. Nguyen-Kuok S. Theory of Low-Temperature Plasma Physics, – Springer Series on Atomic, Optical, and Plasma Physics. Springer, 2017, 495 p, DOI:10.1007/978-3-319-43721-7.
10. Matveev I., Matveyeva S., Zverev S. Experimental Investigations of the APT-60 High-Pressure Inductively Coupled Plasma System on Different Plasma Gases. – IEEE Transactions on Plasma Science, 2014, 42(12), DOI: 10.1109/TPS.2014.2362414.
11. Karnoukhov A.E. et al. Studying the Effect of RF-Plasma Treatment on the Indicators of Adhesion of Inorganic Fibers to the Polymeric Binder. – Journal of Physics: Conference Series, 2019, 1328(1), DOI: 10.1088/1742-6596/1328/1/012041.
12. Freeman M.P., Chase J.D. Energy-Transfer Mechanism and Typical Operation Characteristics for the Thermal RF Plasma Generator. – Journal of Applied Physics, 1968, 39(1), pp.180–193, DOI:10.1063/1.1655729.
13. Eckert H.U. Analysis of Thermal Induction Plasmas Dominated by Radial Conduction Losses. – Journal of Applied Physics, 1970, 41(4), pp. 1520–1528, DOI:10.1063/1.1659067.
14. Eckert H.U. Analytical Treatment of Radiation and Conduction Losses in Thermal Induction Plasmas. – Journal of Applied Physics, 1970, 41(4), pp. 1529–1537, DOI:10.1063/1.1659068.
15. Eckert H.U. Analysis of Thermal Induction Plasmas between Coaxial Cylinders. – Journal of Applied Physics, 1972, 43(1), pp. 46–52, DOI:10.1063/1.1660834.
16. Eckert H.U. Two-Dimensional Analysis of Thermal Induction Plasmas in Finite Cylinders. – Journal of Applied Physics, 1977, 48(4), pp. 1467–1472, DOI:10.1063/1.323862.
17. Bai L. et al. Modeling and Selection of RF Thermal Plasma Hot-Wall Torch for Large-Scale Production of Nanopowders. – Materials, 2019, 12(13), DOI: 10.3390/ma12132141.
18. Kornev R.A., Shabarova L.V., Shishkin A.I. Gas-Dynamic and Thermal Processes in a High-Frequency Induction Plasma Torch with Tangential Stabilization of the Gas Flow. – Theoretical Foundations of Chemical Engineering, 2017, 51(5), pp. 736–741, DOI: 10.1134/S0040579517050323.
19. Frolov V., Ivanov D., Sosnin V. Numerical Simulation of High-Power RF–RF Hybrid Plasma Torch. – IOP Conference Series Materials Science and Engineering, 2019, 643(1), DOI: 10.1088/1757-899X/643/1/012071.
20. Rehmet C., Cao T., Cheng Y. Numerical Study of Si Nanoparticles Formation by SiCl4 Hydrogenation in RF Plasma. – Plasma Sources Science and Technology, 2016, 25(2), DOI: 10.1088/ 0963-0252/25/2/025011.
21. Yu M. et al. Numerical Simulation on High Frequency Discharge of Chemical Nonequilibrium Argon Inductively Coupled Plasma. – Journal of Physics: Conference Series, 2019, 1300(1), DOI: 10.1088/1742-6596/1300/1/012063.
22. Grishin Yu.M., Long M. Numerical Simulation of the Argon-Hydrogen Plasma Flow in the Channel of RF Inductively Coupled Plasma Torch. – Journal of Physics: Conference Series, 2017, 891(1), 012302, DOI: 10.1088/1742-6596/891/1/012302.
23. Tong J.B. et al. Numerical Simulation and Prediction of Radio Frequency Inductively Coupled Plasma Spheroidization. – Applied Thermal Engineering, 2016, 100, pp. 1198–1206. DOI: 10.1016/j.applthermaleng.2016.02.108.
24. Xin Q. et al. Effects of Conical Nozzle and Its Geometry on Properties of an Inductively Coupled Plasma Jet Used for Optical Fabrication. – Applied Thermal Engineering, 2018, 128, pp. 785–794, DOI: 10.1016/j.applthermaleng.2017.07.131.
25. Alavi S., Mostaghimi J. A Novel ICP Torch with Conical Geometry. – Plasma Chemistry and Plasma Processing. 2019, 39(2), pp. 359–376, DOI: 10.1007/s11090-018-9948-5.
26. Ivanov D.V., Zverev S.G. Mathematical Simulation of Processes in ICP/RF Plasma Torch for Plasma Chemical Reactions. – IEEE Transactions on Plasma Science, 2017, 45 (12), pp. 3125–3129, DOI: 10.1109/TPS.2017.2773140.
27. Ivanov D.V., Zverev S.G. Mathematical Simulation of Pro-cesses in Air ICP/RF Plasma Torch for High-Power Applications. – IEEE Transactions on Plasma Science, 2020, 48 (2), pp. 338–342, DOI: 10.1109/TPS.2019.2957676.
28. Matveev I.B., Serbin S.I. A Multitorch RF Plasma System as a Way to Improve Temperature Uniformity for High-Power Applications. – IEEE Transactions on Plasma Science, 2020, 48 (2), pp. 332–337, DOI: 10.1109/TPS.2019.2950260.
29. Shigeta M. Time-Dependent 3D Simulation of an Argon RF Inductively Coupled Thermal Plasma. – Plasma Sources Science and Technology, 2012, 21(5), DOI: 10.1088/0963-0252/21/5/055029.
30. Shigeta M. Turbulence Modelling of Thermal Plasma Flows. – Journal of Physics D Applied Physics, 2016, 49(49), DOI: 10.1088/0022-3727/49/49/493001.
---
The work was carried out with the support of the Russian Science Foundation (grant No. 22-29-20223) and the St. Petersburg State Autonomous Institution "Fund for Support of Scientific, Scientific-Technical, Innovative Activities" (Agreement No. 64/2022)
Published
2022-12-19
Section
Article