Перспективы развития авиационных электрических машин

  • Вячеслав Евгеньевич Вавилов
  • Флюр Рашитович Исмагилов
  • Егор Андреевич Пронин
  • Эвелина Ильгизовна Зайнагутдинова
Ключевые слова: самолеты, концепции электрической авиации, авиационные электрические машины

Аннотация

Электрификация авиации является перспективным направлением развития летательных аппаратов и одним из возможных решений по снижению выбросов вредных веществ в атмосферу. Развитие электрических систем в авиации непосредственно связано с использованием электрических машин на борту летательного аппарата. В статье дан обзор перспектив использования электрических машин в авиационной промышленности. Рассмотрены основные концепции электрической авиации (концепции более электрического самолета; самолета с гибридной силовой установкой; самолета с турбоэлектрической силовой установкой; полностью электрического самолета), реализацией которых занимается большое количество исследовательских сообществ и крупных корпораций. Дана оценка современного состояния, преимуществ и проблем перечисленных концепций электрической авиации. Приведены структурные схемы, поясняющие принцип каждой из рассматриваемых концепций. Представлен краткий анализ часто используемых и наиболее изученных типов авиационных электрических машин. Дано описание их текущего состояния разработки. Рассмотрены перспективные методы оптимизации конструкции электрических машин, а также стадии их изученности и развития в области электротехники. Сформулирован вывод о дальнейшем развитии авиационных электрических машин.

Биографии авторов

Вячеслав Евгеньевич Вавилов

доктор техн. наук, доцент, заведующий кафедрой электромеханики, директор ПИШ «Моторы будущего», Уфимский университет науки и технологий, Уфа, Россия.

Флюр Рашитович Исмагилов

доктор техн. наук, профессор, профессор кафедры электромеханики, зам. директора по науке ПИШ «Моторы будущего», Уфимский университет науки и технологий, Уфа, Россия.

Егор Андреевич Пронин

инженер кафедры электромеханики, ПИШ «Моторы будущего», Уфимский университет науки и технологий, Уфа, Россия.

Эвелина Ильгизовна Зайнагутдинова

инженер кафедры электромеханики, ПИШ «Моторы будущего», Уфимский университет науки и технологий, Уфа, Россия.

Литература

1. Tom L. et al. Commercial Aircraft Electrification – Current State and Future Scope. – Energies, 2021, vol. 14(24), DOI: 10.3390/en14248381.
2. Liu Y. et al. Review of More Electric Engines for Civil Aircraft. – International Journal of Aeronautical and Space Sciences, 2022, vol. 23(4), pp. 784–793, DOI: 10.1007/s42405-022-00469-0.
3. Benzaquen J., He J.B., Mirafzal B. Toward More Electric Powertrains in Aircraft: Technical Challenges and Advancements. – CES Transactions on Electrical Machines and Systems, 2021, vol. 5(3), pp. 177–193, DOI: 10.30941/CESTEMS.2021.00022.
4. Buticchi G. et al. On-Board Microgrids for the More Electric Aircraft – Technology Review. – IEEE Transactions on Industrial Electronics, 2018, vol. 66(7), pp. 5588–5599, DOI: 10.1109/TIE.2018.2881951.
5. Ni K. et al. Electrical and Electronic Technologies in More-Electric Aircraft: A Review. – IEEE Access, 2019, vol. 7, pp. 76145–76166, DOI: 10.1109/ACCESS.2019.2921622.
6. Robbins D. et al. F-35 Subsystems Design, Development & Verification. – 2018 Aviation Technology, Integration, and Operations Conference, 2018, DOI: 10.2514/6.2018-3518.
7. Wiegand C. F-35 Air Vehicle Technology Overview. – Aviation Technology, Integration, and Operations Conference, 2018, DOI: 10.2514/6.2018-3368.
8. Roboam X. New Trends and Challenges of Electrical Networks Embedded in “More Electrical Aircraft”. – IEEE International Symposium on Industrial Electronics, 2011, pp. 26–31, DOI: 10.1109/ISIE.2011.5984130.9.
9. Wheeler P., Bozhko S. The More Electric Aircraft: Technology and Challenges. – IEEE Electrification Magazine, 2014, vol. 2(4), pp. 6–12, DOI: 10.1109/MELE.2014.2360720.
10. Ye X.I.E. et al. Review of Hybrid Electric Powered Aircraft, Its Conceptual Design and Energy Management Methodologies. – Chinese Journal of Aeronautics, 2021, vol. 34(4), pp. 432–450, DOI: 10.1016/j.cja.2020.07.017.
11. Brelje B.J., Martins J.R.R.A. Electric, Hybrid, and Turboelectric Fixed-Wing Aircraft: A Review of Concepts, Models, and Design Approaches. – Progress in Aerospace Sciences, 2019, vol. 104, DOI: 10.1016/j.paerosci.2018.06.004.
12. Jansen R. et al. Overview of NASA Electrified Aircraft Propulsion (EAP) Research for Large Subsonic Transports. – 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017, DOI: 10.2514/6.2017-4701.
13. Халютин С.П., Давидов А.О., Жмуров Б.В. Электрические и гибридные самолеты: перспективы создания. – Электричество, 2017, № 9, с. 4–16.
14. Gnadt A.R. et al. Technical and Environmental Assessment of All-Electric 180-Passenger Commercial Aircraft. – Progress in Aerospace Sciences, 2019, vol. 105, DOI: 10.1016/j.paerosci.2018.11.002.
15. El-Refaie A., Osama M. High Specific Power Electrical Machines: A System Perspective. – CES Transactions on Electrical Machines and Systems, 2019, vol. 3(1), pp. 88–93, DOI: 10.30941/CESTEMS.2019.00012.
16. Vaidya J., Gregory E. High Speed Induction Generator for Applications in Aircraft Power Systems. – SAE Transactions, 2004, pp. 1830–1836, DOI:10.4271/2004-01-3174.
17. Skawinski G. Fuel pump motor-drive systems for more electric aircraft, 2010 [Электрон. ресурс], URL: https://researchportal.bath.ac.uk/en/studentTheses/fuel-pump-motor-drive-systems-for-more-electric-aircraft (дата обращения 05.05.2023).
18. Bojoi R. et al. Control of Shaft-Line-Embedded Multiphase Starter/Generator for Aero-Engine. – IEEE Transactions on Industrial Electronics, 2015, vol. 63(1), pp. 641–652, DOI: 10.1109/TIE.2015.2472637.
19. Jiao S. et al. Induction Generator Based Electrical Power Generation System for More Electric Aircraft Applications. – AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), 2020, pp. 1–9.
20. Bojoi R. et al. Control of Shaft-Line-Embedded Multiphase Starter/Generator for Aero-Engine. – IEEE Transactions on Industrial Electronics, 2015, vol. 63(1), pp. 641–652, DOI:10.1109/TIE.2015. 2472637.
21. Siadatan A. et al. Design, Simulation and Experimental Results for a Novel Type of Two-Layer 6/4 Three-Phase Switched Reluctance Motor/Generator. – Energy Conversion and Management, 2013, vol. 71(12), pp. 199–207, DOI:10.1016/j.enconman.2013.03.011.
22. Velmurugan G. More Electric Aircraft Starter-Generator System Based on Switched Reluctance Machine: a Feasibility Study, 2020 [Электрон. ресурс], URI: https://eprints.nottingham.ac.uk/id/eprint/61211 (дата обращения 05.05.2023).
23. Xiaoyuan C. et al. Comparison of Two Different Fault-Tolerant Switched Reluctance Machines for Fuel Pump Drive in Aircraft. – IEEE 6th International Power Electronics and Motion Control Conference, 2009, pp. 2086–2090, DOI: 10.1109/IPEMC.2009.5157742.
24. Bartolo J.B. et al. Design and Initial Testing of a High-Speed 45-kW Switched Reluctance Drive for Aerospace Application. – IEEE Transactions on Industrial Electronics, 2016, vol. 64(2), pp. 988–997, DOI: 10.1109/TIE.2016.2618342.
25. Ganev E. Selecting the Best Electric Machines for Electrical Power-Generation Systems: High-Performance Solutions for Aerospace More Electric Architectures. – IEEE Electrification Magazine, 2014, vol. 2(4), pp. 13–22. DOI: 10.1109/MELE.2014.2364731.
26. Diab A. et al. Performance Analysis of PMSM for High-Speed Starter-Generator System. – IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), 2018, DOI: 10.1109/ESARS-ITEC.2018.8607764.
27. Thangaraj B., Arumugam D., Somasundaram G. FEA Analysis of SPMSG for Aircraft Application. – International Journal of Engineering and Technology (UAE), 2018, vol. 7, pp. 89–93.
28. Liu C. et al. Design and Control of a Doubly-Excited Permanent-Magnet Brushless Integrated-Starter-Generator for Hybrid Electric Vehicles. – 2007 IEEE Industry Applications Annual Meeting, 2007, pp. 1702–1709, DOI: 10.1109/07IAS.2007.261.
29. Ganev E.D., Salam A. Advanced Electric Drives for Aerospace Electric and Hybrid Propulsion. – AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), 2019, DOI: 10.2514/6.2019-4399.
30. Messine F. Deterministic Global Optimization Using Interval Constraint Propagation Techniques. – RAIRO-Operations Research-Recherche Opérationnelle, 2004, vol. 38(4), pp. 277–293, DOI: 10.1051/ro:2004026.
31. Belousov A.I., Sapozhnikov A.Y. Synthesis of Basic Structural Design of Aircraft GTE Based on Genetic Algorithms. – Russian Aeronautics (Iz VUZ), 2015, vol. 58, pp. 199–204, DOI: 10.3103/S1068799815020105.
32. Thanh P.C., Wen S.A. A Comparative Study of Control Methods for Induction Motor and High Performance Z-Source Inverter. – TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, vol. 11(6), pp. 2912–2925, DOI: 10.11591/telkomnika.v11i6.2445.
33. Yan-Cai X. et al. Transformer Fault Diagnosis Based on Hierarchical Fuzzy Support Vector Machines. – TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, vol. 11(10), pp. 5842–5850, DOI:10.11591/telkomnika.v11i10.3414.
34. Krishnamoorthy A., Dharmalingam K. Application of Genetic Algorithms in the Design Optimization of Three-Phase Induction Motor. – Journal of Computer Applications, 2009, vol. 2(4), pp. 1–5.
35. Stipetic S., Miebach W., Zarko D. Optimization in Design of Electric Machines: Methodology and Workflow. – ACEMP, OPTIM & ELECTROMOTION, 2015, pp. 441–448, DOI: 10.1109/OPTIM.2015.7427030.
36. Uler G.F., Mohammed O.A., Koh C.S. Design Optimization of Electrical Machines Using Genetic Algorithms. – IEEE Transactions on Magnetics, 1995, vol. 31(3), pp. 2008–2011, DOI: 10.1109/20.376437.
37. Cho D.H., Jung H.K., Lee C.G. Induction Motor Design for Electric Vehicle Using a Niching Genetic Algorithm. – IEEE Transactions On Industry Applications, 2001, vol. 37(4), pp. 994–999, DOI: 10.1109/28.936389.
---
Работа выполнена при поддержке Российского научного фонда, проект № 21-19-00454
#
1. Tom L. et al. Commercial Aircraft Electrification – Current State and Future Scope. – Energies, 2021, vol. 14(24), DOI: 10.3390/en14248381.
2. Liu Y. et al. Review of More Electric Engines for Civil Aircraft. – International Journal of Aeronautical and Space Sciences, 2022, vol. 23(4), pp. 784–793, DOI: 10.1007/s42405-022-00469-0.
3. Benzaquen J., He J.B., Mirafzal B. Toward More Electric Powertrains in Aircraft: Technical Challenges and Advancements. – CES Transactions on Electrical Machines and Systems, 2021, vol. 5(3), pp. 177–193, DOI: 10.30941/CESTEMS.2021.00022.
4. Buticchi G. et al. On-Board Microgrids for the More Electric Aircraft – Technology Review. – IEEE Transactions on Industrial Electronics, 2018, vol. 66(7), pp. 5588–5599, DOI: 10.1109/TIE.2018. 2881951.
5. Ni K. et al. Electrical and Electronic Technologies in More-Electric Aircraft: A Review. – IEEE Access, 2019, vol. 7, pp. 76145–76166, DOI: 10.1109/ACCESS.2019.2921622.
6. Robbins D. et al. F-35 Subsystems Design, Development & Verification. – 2018 Aviation Technology, Integration, and Operations Conference, 2018, DOI: 10.2514/6.2018-3518.
7. Wiegand C. F-35 Air Vehicle Technology Overview. – Aviation Technology, Integration, and Operations Conference, 2018, DOI: 10.2514/6.2018-3368.
8. Roboam X. New Trends and Challenges of Electrical Networks Embedded in “More Electrical Aircraft”. – IEEE International Symposium on Industrial Electronics, 2011, pp. 26–31, DOI: 10.1109/ISIE.2011.5984130.9.
9. Wheeler P., Bozhko S. The More Electric Aircraft: Technology and Challenges. – IEEE Electrification Magazine, 2014, vol. 2(4), pp. 6–12, DOI: 10.1109/MELE.2014.2360720.
10. Ye X.I.E. et al. Review of Hybrid Electric Powered Aircraft, Its Conceptual Design and Energy Management Methodologies. – Chinese Journal of Aeronautics, 2021, vol. 34(4), pp. 432–450, DOI: 10.1016/j.cja.2020.07.017.
11. Brelje B.J., Martins J.R.R.A. Electric, Hybrid, and Turbo-electric Fixed-Wing Aircraft: A Review of Concepts, Models, and Design Approaches. – Progress in Aerospace Sciences, 2019, vol. 104, DOI: 10.1016/j.paerosci.2018.06.004.
12. Jansen R. et al. Overview of NASA Electrified Aircraft Propulsion (EAP) Research for Large Subsonic Transports. – 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017, DOI: 10.2514/6.2017-4701.
13. Halyutin S.P., Davidov A.O., Zhmurov B.V. Elektrichestvo – in Russ. (Electrisity), 2017, No. 9, pp. 4–16.
14. Gnadt A.R. et al. Technical and Environmental Assessment of All-Electric 180-Passenger Commercial Aircraft. – Progress in Aerospace Sciences, 2019, vol. 105, DOI: 10.1016/j.paerosci.2018.11.002.
15. El-Refaie A., Osama M. High Specific Power Electrical Machines: A System Perspective. – CES Transactions on Electrical Machines and Systems, 2019, vol. 3(1), pp. 88–93, DOI: 10.30941/CESTEMS.2019.00012.
16. Vaidya J., Gregory E. High Speed Induction Generator for Applications in Aircraft Power Systems. – SAE Transactions, 2004, pp. 1830–1836, DOI:10.4271/2004-01-3174.
17. Skawinski G. Fuel pump motor-drive systems for more electric aircraft, 2010 [Electron. resource], URL: https://researchportal.bath.ac.uk/en/studentTheses/fuel-pump-motor-drive-systems-for-more-electric-aircraft (Date of appeal 05.05.2023).
18. Bojoi R. et al. Control of Shaft-Line-Embedded Multiphase Starter/Generator for Aero-Engine. – IEEE Transactions on Industrial Electronics, 2015, vol. 63(1), pp. 641–652, DOI: 10.1109/TIE.2015.2472637.
19. Jiao S. et al. Induction Generator Based Electrical Power Generation System for More Electric Aircraft Applications. – AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), 2020, pp. 1–9.
20. Bojoi R. et al. Control of Shaft-Line-Embedded Multiphase Starter/Generator for Aero-Engine. – IEEE Transactions on Industrial Electronics, 2015, vol. 63(1), pp. 641–652, DOI:10.1109/TIE.2015.2472637.
21. Siadatan A. et al. Design, Simulation and Experimental Results for a Novel Type of Two-Layer 6/4 Three-Phase Switched Reluctance Motor/Generator. – Energy Conversion and Management, 2013, vol. 71(12), pp. 199–207, DOI:10.1016/j.enconman.2013.03.011.
22. Velmurugan G. More Electric Aircraft Starter-Generator System Based on Switched Reluctance Machine: a Feasibility Study, 2020 [Electron. resource], URI: https://eprints.nottingham.ac.uk/id/eprint/61211 (Date of appeal 05.05.2023).
23. Xiaoyuan C. et al. Comparison of Two Different Fault-Tolerant Switched Reluctance Machines for Fuel Pump Drive in Aircraft. – IEEE 6th International Power Electronics and Motion Control Conference, 2009, pp. 2086–2090, DOI: 10.1109/IPEMC.2009.5157742.
24. Bartolo J.B. et al. Design and Initial Testing of a High-Speed 45-kW Switched Reluctance Drive for Aerospace Application. – IEEE Transactions on Industrial Electronics, 2016, vol. 64(2), pp. 988–997, DOI: 10.1109/TIE.2016.2618342.
25. Ganev E. Selecting the Best Electric Machines for Electrical Power-Generation Systems: High-Performance Solutions for Aerospace More Electric Architectures. – IEEE Electrification Magazine, 2014, vol. 2(4), pp. 13–22. DOI: 10.1109/MELE.2014.2364731.
26. Diab A. et al. Performance Analysis of PMSM for High-Speed Starter-Generator System. – IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), 2018, DOI: 10.1109/ESARS-ITEC.2018.8607764.
27. Thangaraj B., Arumugam D., Somasundaram G. FEA Analysis of SPMSG for Aircraft Application. – International Journal of Engineering and Technology (UAE), 2018, vol. 7, pp. 89–93.
28. Liu C. et al. Design and Control of a Doubly-Excited Permanent-Magnet Brushless Integrated-Starter-Generator for Hybrid Electric Vehicles. – 2007 IEEE Industry Applications Annual Meeting, 2007, pp. 1702–1709, DOI: 10.1109/07IAS.2007.261.
29. Ganev E.D., Salam A. Advanced Electric Drives for Aerospace Electric and Hybrid Propulsion. – AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), 2019, DOI: 10.2514/6.2019-4399.
30. Messine F. Deterministic Global Optimization Using Interval Constraint Propagation Techniques. – RAIRO-Operations Research-Recherche Opérationnelle, 2004, vol. 38(4), pp. 277–293, DOI: 10.1051/ro:2004026.
31. Belousov A.I., Sapozhnikov A.Y. Synthesis of Basic Structural Design of Aircraft GTE Based on Genetic Algorithms. – Russian Aeronautics (Iz VUZ), 2015, vol. 58, pp. 199–204, DOI: 10.3103/S1068799815020105.
32. Thanh P.C., Wen S.A. A Comparative Study of Control Methods for Induction Motor and High Performance Z-Source Inverter. – TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, vol. 11(6), pp. 2912–2925, DOI: 10.11591/telkomnika.v11i6.2445.
33. Yan-Cai X. et al. Transformer Fault Diagnosis Based on Hierarchical Fuzzy Support Vector Machines. – TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, vol. 11(10), pp. 5842–5850, DOI:10.11591/telkomnika.v11i10.3414.
34. Krishnamoorthy A., Dharmalingam K. Application of Genetic Algorithms in the Design Optimization of Three-Phase Induction Motor. – Journal of Computer Applications, 2009, vol. 2(4), pp. 1–5.
35. Stipetic S., Miebach W., Zarko D. Optimization in Design of Electric Machines: Methodology and Workflow. – ACEMP, OPTIM & ELECTROMOTION, 2015, pp. 441–448, DOI: 10.1109/OPTIM.2015.7427030.
36. Uler G.F., Mohammed O.A., Koh C.S. Design Optimization of Electrical Machines Using Genetic Algorithms. – IEEE Transactions on Magnetics, 1995, vol. 31(3), pp. 2008–2011, DOI: 10.1109/20.376437.
37. Cho D.H., Jung H.K., Lee C.G. Induction Motor Design for Electric Vehicle Using a Niching Genetic Algorithm. – IEEE Transactions On Industry Applications, 2001, vol. 37(4), pp. 994–999, DOI: 10.1109/28.936389
---
The work was supported by the Russian Science Foundation, project No. 21-19-00454
Опубликован
2023-07-17
Раздел
Статьи