Электротепловые переходные процессы в сети с высокотемпературным сверхпроводящим трансформатором с функцией токоограничения
Аннотация
Представлены результаты исследования тепловых и электромагнитных переходных процессов в электроэнергетической системе с высокотемпературным сверхпроводящим (ВТСП) трансформатором с функцией токоограничения. Для исследований разработан экспериментальный образец ВТСП-трансформатора с обмотками из сверхпроводника Y1Bа2Cu3O7 и диэлектрической средой в виде жидкого азота с рабочей температурой 77 К. На примере экспериментального образца доказано, что трансформаторы с ВТСП-обмотками возможно применять для ограничения токов короткого замыкания в электрических системах. Разработанная математическая модель трехфазной одномашинной сети с ВТСП-трансформатором позволила провести глубокий анализ электромагнитных переходных процессов в режиме токоограничения, а также исследовать тепловое и электродинамическое воздействия тока короткого замыкания при варьировании его вида (однофазное, двухфазное и трехфазное короткое замыкание) и типа подключенной нагрузки (активная, активно-индуктивная, активно-емкостная) на степень токоограничения. Установлено, что в момент токоограничения возникают существенные тепловые потоки, которое также необходимо ограничивать. Показано положительное влияние ВТСП-трансформаторов на рабочие режимы электроэнергетической системы. Полученные результаты теоретических и экспериментальных исследований доказывают высокую эффективность их токоограничивающей функции.
Литература
2. Elsherif M.A. The Application of Superconducting Technologies in Future Electrical Power Systems: Durham E-Theses. Durham University, 2013, 193 p.
3. Hekmati A., et al. HTS Transformer Windings Design Using Distributive Ratios for Minimization of Short Circuit Forces. – J Superconductivity Novel Magnetism, 2019, vol. 32, No. 2, pp. 151–158.
4. Vysotsky V.S., et al. Development and Test Results of HTS Windings for Superconducting Transformer with 1 MVA Rated Power. – IEEE Transactions on Applied Superconductivity, 2017, vol. 27, No. 4, pp. 1–5.
5. Dai S., et al. Development of a 1250 kVA Superconducting Transformer and Its Demonstration at the Superconducting Substation. – IEEE Transactions on Applied Superconductivity, 2017, vol. 26, No. 1, pp. 1–7.
6. Hu D., et al. Development of a Single-Phase 330kVA HTS Transformer Using GdBCO Tapes. – Physica C: Superconductivity and its applications, 2017, vol. 539, DOI:10.1016/j.physc.2017.06.002.
7. Манусов В.З., Крюков Д.О. Обзор конструкций трансформаторов со сверхпроводящими обмотками. – Электричество, 2019, № 8, с. 4–6.
8. Komarzyniec G. 14 kVA Superconducting Transformer with REBCO Windings. – 2017 International Conference on Electromagnetic Devices and Processes in Environment Protection with Seminar Applications of Superconductors, 2017, DOI:10.1109/ELMECO.2017.8267753.
9. Berger A., et al. Test Results of 60 kVA Current Limiting Transformer with Full Recovery under Load. – IEEE Transactions on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 1384–1387.
10. Xu M., et al. Generalized Critical-State Model for Hard Superconductors. – Phys. Rev. B., 1990, vol.42, No. 16, pp. 10773–10776.
11. Algarni R., et al. Enhanced Critical Current Density and Flux Pinning Traits with Dy2O3 Nanoparticles Added to YBa2Cu3O7-d Superconductor. – Journal of Alloys and Compounds, 2021, vol. 852, p. 157019.
12. Song W., et al. AC Loss Simulation in a HTS 3-Phase 1 MVA Transformer Using H Formulation. – Cryogenics, 2018, vol. 94, pp. 14–21.
13. Ghabeli A., et al. Optimization of Distributive Ratios of Apportioned Winding Configuration in HTS Power Transformers for Hysteresis Loss and Leakage Flux Reduction. – Journal of Superconductivity and Novel Magnetism, 2015, vol. 28, No. 12, pp. 3463–3479.
14. Zubko V.V., Fetisov S.S. and Vysotsky V.S. Hysteresis Losses Analysis in 2G HTS Cables. – IEEE Transactions on Applied Superconductivity, 2016, vol. 26, No. 3, pp. 1–5.
15. Shen B., et al. Review of the AC Loss Computation for HTS Using H Formulation. – Superconductor Science and Technology, 2020, vol. 33, No. 3, p. 033002.
16. Berger A., et al. Comparison of the Efficiency of Superconducting and Conventional Transformers. – Journal of Physics: Conference Series, 2010, vol. 234, p. 032004.
17. Janowski T., et al. Superconducting Devices for Power Engineering. – Proceedings of the XVII National Conference on Superconductivity, 2016, vol. 130, No. 2, pp. 537–544.
18. Manusov V.Z., Semenov A.V., Kriukov D.O. Computational and Experimental Study of Air-Core HTS Transformer Electrothermal Behavior at Current Limiting Mode. – International Journal of Electrical and Computer Engineering, 2021, vol. 11, No. 1, pp. 155–162.
19. Ivanov D.M., Manusov V.Z, and Semenov A.V. Experimental Studies of a High-Temperature Superconducting Prototype Transformer with Current Limiting Function. – 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE): proc. Moscow, Russia, 2020, pp. 97–102.
20. Lei W., et al. Film Boiling Heat Transfer Prediction of Liquid Nitrogen from Different Geometry Heaters. – International Journal of Multiphase Flow, 2020, vol. 129, p. 103294.
21. Zhou J., Chan W., Schwartz J. Quench Detection Criteria for YBa2Cu3O7-δ Coils Monitored via a Distributed Temperature Sensor for 77 K Cases. – IEEE Transactions on Applied Superconductivity, 2018, vol. 28, No. 5, p. 4703012.
22. Павленко А.Н., Суртаев А.С., Мацех А.М. Переходные процессы в стекающих пленках жидкости при нестационарном тепловыделении. – Теплофизика высоких температур, 2007, Т. 45, № 6, c. 905–916.
23. Manusov V.Z., Ivanov D.M., Nazarov M.K. Analyses of Electrical Parameters of Power Transformers with Superconducting Windings. – 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, 2019, pp. 547–551.
24. Moradnouri A., et al. Survey on High-Temperature Superconducting Transformer Windings Design. – Journal of Superconductivity and Novel Magnetism, 2020, vol. 33, No. 9, pp. 2581–2599.
25. Ковалев Л. К. и др. Зарубежные и русские разработки в области создания сверхпроводниковых электрических машин и устройств. – Известия РАН. Энергетика, 2012, № 6, с. 3–26.
26. Coombs T., et al. High-Temperature Superconducting (HTS) Transformer-Rectifier Flux Pump for Powering No-Insulation Superconducting Magnet with Low Characteristic Resistance. – Physica C: Superconductivity and its applications, 2019, vol. 560, pp. 1–6.
27. Kondratowicz-Kucewicz B., Wojtasiewicz G. The Proposal of a Transformer Model With Winding Made of Parallel 2G HTS Tapes With Transpositioners and its Contact Cooling System. – IEEE Transactions Applied Superconductivity, 2018, vol. 28, No. 4., p. 5500405.
28. Wojtasiewicz G. Fault Current Limitation by 2G HTS Superconducting Transformer-Experimental Investigation. – Acta Physica Polonica A, 2016, vol. 130, No. 2, pp. 516–520.
---
Исследование выполнено при финансовой поддержке в рамках реализации программы развития НГТУ, научный проект № С21-24.
#
1. Hellmann S., et al. Manufacturing of a 1-MVA-Class Super-conducting Fault Current Limiting Transformer With Recovery-Under-Load Capabilities. – IEEE Transactions on Applied Superconductivity, 2017, vol. 27, No. 4, pp. 1–6, DOI:10.1109/TASC.2017.2652493.
2. Elsherif M.A. The Application of Superconducting Technologies in Future Electrical Power Systems: Durham E-Theses. Durham University, 2013, 193 p.
3. Hekmati A., et al. HTS Transformer Windings Design Using Distributive Ratios for Minimization of Short Circuit Forces. – J Superconductivity Novel Magnetism, 2019, vol. 32, No. 2, pp. 151–158.
4. Vysotsky V.S., et al. Development and Test Results of HTS Windings for Superconducting Transformer with 1 MVA Rated Power. – IEEE Transactions on Applied Superconductivity, 2017, vol. 27, No. 4, pp. 1–5.
5. Dai S., et al. Development of a 1250 kVA Superconducting Transformer and Its Demonstration at the Superconducting Substation. – IEEE Transactions on Applied Superconductivity, 2017, vol. 26, No. 1, pp. 1–7.
6. Hu D., et al. Development of a Single-Phase 330kVA HTS Transformer Using GdBCO Tapes. – Physica C: Superconductivity and its applications, 2017, vol. 539, DOI:10.1016/j.physc.2017.06.002.
7. Manusov V.Z., Kriukov D.O. Elektrichestvo – in Russ. (Electricity), 2019, No. 8, pp. 4–6.
8. Komarzyniec G. 14 kVA Superconducting Transformer with REBCO Windings. – 2017 International Conference on Electromagnetic Devices and Processes in Environment Protection with Seminar Applications of Superconductors, 2017, DOI:10.1109/ELMECO.2017.8267753.
9. Berger A., et al. Test Results of 60 kVA Current Limiting Transformer with Full Recovery under Load. – IEEE Transactions on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 1384–1387.
10. Xu M., et al. Generalized Critical-State Model for Hard Superconductors. – Phys. Rev. B., 1990, vol.42, No. 16, pp. 10773–10776.
11. Algarni R., et al. Enhanced Critical Current Density and Flux Pinning Traits with Dy2O3 Nanoparticles Added to YBa2Cu3O7-d Superconductor. – Journal of Alloys and Compounds, 2021, vol. 852, p. 157019.
12. Song W., et al. AC Loss Simulation in a HTS 3-PHASE 1 MVA Transformer Using H Formulation. – Cryogenics, 2018, vol. 94, pp. 14–21.
13. Ghabeli A., et al. Optimization of Distributive Ratios of Apportio-ned Winding Configuration in HTS Power Transformers for Hysteresis Loss and Leakage Flux Reduction. – Journal of Superconductivity and Novel Magnetism, 2015, vol. 28, No. 12, pp. 3463–3479.
14. Zubko V.V., Fetisov S.S., Vysotsky V.S. Hysteresis Losses Analysis in 2G HTS Cables. – IEEE Transactions on Applied Superconductivity, 2016, vol. 26, No. 3, pp. 1–5.
15. Shen B., et al. Review of the AC Loss Computation for HTS Using H Formulation. – Superconductor Science and Technology, 2020, vol. 33, No. 3, p. 033002.
16. Berger A., et al. Comparison of the Efficiency of Superconducting and Conventional Transformers. – Journal of Physics: Conference Series, 2010, vol. 234, p.032004.
17. Janowski T., et al. Superconducting Devices for Power Engineering. – Proceedings of the XVII National Conference on Superconductivity, 2016, vol. 130, No. 2, pp. 537–544.
18. Manusov V.Z., Semenov A.V., Kriukov D.O. Computational and Experimental Study of Air-Core HTS Transformer Electrothermal Behavior at Current Limiting Mode. – International Journal of Electrical and Computer Engineering, 2021, vol. 11, No. 1, pp. 155–162.
19. Ivanov D.M., Manusov V.Z., Semenov A.V. Experimental Studies of a High-temperature Superconducting Prototype Transformer with Current Limiting Function. – 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE): proc. Moscow, Russia, 2020, pp. 97–102.
20. Lei W., et al. Film Boiling Heat Transfer Prediction of Liquid Nitrogen From Different Geometry Heaters. – International Journal of Multiphase Flow, 2020, vol. 129, p.103294.
21. Zhou J., Chan W., Schwartz J. Quench Detection Criteria for YBa2Cu3O7-δ Coils Monitored via a Distributed Temperature Sensor for 77 K Cases. – IEEE Transactions on Applied Superconductivity, 2018, vol. 28, No. 5, p.4703012.
22. Pavlenko A.N., Surtaev A.S., Matsekh A.M. Teplofizika vysokikh temperatur – in Russ. (Thermophysics of High Temperatures), 2007, vol. 45, No. 6, pp. 905–916.
23. Manusov V.Z., Ivanov D.M., Nazarov M.K. Analyses of Electrical Parameters of Power Transformers with Superconducting Windings. – 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, 2019, pp. 547–551.
24. Moradnouri A., et al. Survey on High-Temperature Superconducting Transformer Windings Design. – Journal of Supercon-ductivity and Novel Magnetism, 2020, vol. 33, No. 9, pp. 2581–2599.
25. Kovalev L.K., et al. Izvestiya RAN. Energetika – in Russ. (Proceedings of the Russian Academy of Sciences), 2012, No. 6, pp. 3–26.
26. Coombs T., et al. High-Temperature Superconducting (HTS) Transformer-Rectifier Flux Pump for Powering No-Insulation Superconducting Magnet with Low Characteristic Resistance. – Physica C: Superconductivity and its applications, 2019, vol. 560, pp. 1–6.
27. Kondratowicz-Kucewicz B. and Wojtasiewicz G. The Proposal of a Transformer Model With Winding Made of Parallel 2G HTS Tapes With Transpositioners and its Contact Cooling System. – IEEE Transactions Applied Superconductivity, 2018, vol. 28, No. 4., p. 5500405.
28. Wojtasiewicz G. Fault Current Limitation by 2G HTS Superconducting Transformer-Experimental Investigation. – Acta Physica Polonica A, 2016, vol. 130, No. 2, pp. 516–520.
---
The research was carried out with financial support as part of the implementation of the NSTU development program, Scientific Project No. С21-24.