Инициация молнии как следствие естественной эволюции грозового облака. Ч. 3. Стримеры и стримерно-лидерный переход
Аннотация
Это – заключительная часть исследования, посвященного описанию авторского сценария инициации молнии в грозовом облаке, первые две части которого представлены в работах [1, 2]. В первой части показано, что учет процесса отлипания электронов от отрицательных ионов понижает разрядную напряженность воздуха на 15–30 %. Это частично упрощает, но не решает проблему инициации молнии в грозовом облаке, максимальные напряжённости электрического поля в котором примерно на порядок ниже электрической прочности воздуха. Во второй части описан переход от миллиметровых коронных разрядов к дециметровым областям повышенной ионной проводимости, который становится возможным, если пространственно-временная частота коронных разрядов, возникающих из-за столкновений (сближений) гидрометеоров, превышает вполне умеренное значение 0,1 м–3с–1. В свою очередь, области повышенной ионной проводимости являются источниками положительных стримеров. В статье представлен финальный этап процесса зарождения молнии, на котором ориентируемые крупномасштабным электрическим полем стримеры объединяются в единую плазменную сеть, внутри которой формируется горячий лидерный канал. Показано, что для осуществления перехода от стримеров к «зародышу» лидера молнии необходимо наличие разности потенциалов между границами зоны сильного внутриоблачного поля, превышающей 3 МВ. В конце работы приведено общее заключение, подводящее итоги трилогии.
Литература
1. Иудин Д.И., Сысоев А.А., Раков В.А. Инициация молнии как следствие естественной эволюции грозового облака. Ч. 1. Роль отлипания в снижении критической разрядной напряжённости воздуха. – Электричество, 2022, № 11, с. 13–28.
2. Иудин Д.И., Сысоев А.А., Раков В.А. Инициация молнии как следствие естественной эволюции грозового облака. Ч. 2. Достримерный этап. – Электричество, 2022, № 12, с. 13–22.
3. Базелян Э.М., Райзер Ю.П. Искровой разряд. М.: МФТИ, 1997, 320 с.
4. Dwyer J.R., Uman M.A. The Physics of Lightning. – Physics Reports, 2014, vol. 534(4), pp. 147–241, DOI:10.1016/j.physrep.2013.09.004.
5. Kostinskiy A.Yu. et al. Observation of a New Class of Electric Discharges within Artificial Clouds of Charged Water Droplets and Its Implication for Lightning Initiation within Thunderclouds. – Geophysical Research Letters, 2015, vol. 42, pp. 8165–8171, DOI:10.1002/2015GL065620.
6. Iudin D.I., Trakhtengerts V.Yu., Hayakawa M. Fractal Dynamics of Electric Discharges in a Thundercloud. – Physical Review E, 2003, vol. 68, p. 016601, DOI:10.1103/PhysRevE.68.016601.
7. Kostinskiy A.Yu. et al. Unusual plasma formations produced by positive streamers entering the cloud of negatively charged water droplets. – Journal of Geophysical Research: Atmospheres, 2022, vol. 127(21), p. e2021JD035821, DOI:10.1029/2021JD035821.
8. Nijdam S., Teunissen J., Ebert U. The Physics of Streamer Discharge Phenomena. – Plasma Sources Science and Technology, 2020, vol. 29(10), p. 103001, DOI:10.1088/1361-6595/abaa05.
9. Базелян Э.М., Райзер Ю.П. Физика молнии и молниезащиты. М.: Физматлит, 2001, 320 с.
10. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972, 720 с.
11. Горин Б.Н., Шкилев А.В. Развитие электрического разряда в длинных промежутках стержень-плоскость при отрицательном импульсном напряжении. – Электричество, 1976, № 6, с. 31–39.
12. Reess T. et al. An Experimental Study of Negative Discharge in a 1.3 m Point-Plane Air Gap: the Function of the Space Stem in the Propagation Mechanism. – Journal of Physics D: Applied Physics, 1995, vol. 28(11), pp. 2306–2313.
13. Hill J.D., Uman M.A., Jordan D.M. High-Speed Video Observations of a Lightning Stepped Leader. – Journal of Geophysical Research, 2011, vol. 116, p. D16117, DOI:10.1029/2011jd015818.
14. Petersen D.A., Beasley W.H. High-Speed Video Observations of a Natural Negative Stepped Leader and Subsequent Dart-Stepped Leader. – Journal of Geophysical Research: Atmospheres, 2013, vol. 118(21), pp. 12110–12119, DOI:10.1002/2013jd019910.
15. Edens H.E. et al. Photographic Observations of Streamers and Steps in a Cloud-to-Air Negative Leader. – Geophysical Research Letters, 2014, vol. 41(4), pp. 1336–1342, DOI:10.1002/2013GL059180.
16. Jiang R. et al. Channel Branching and Zigzagging in Negative Cloud-to-Ground Lightning. – Scientific Reports, 2017, vol. 7, p. 3457, DOI:10.1038/s41598-017-03686-w.
17. Nijdam S. et al. Probing Background Ionization: Positive Streamers with Varying Pulse Repetition Rate and with a Radioactive Admixture. – Journal of Physics D: Applied Physics, 2011, vol. 44(45), p. 455201, DOI:10.1088/0022-3727/44/45/455201.
18. Starikovskiy A.Yu., Pancheshnyi S.V., Rakitin A.E. Periodic Pulse Discharge Self-Focusing and Streamer-to-Spark Transition in Under-Critical Electric Field. – In 49-th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2011, AIAA 2011-1271.
19. Tran M., Rakov V. Initiation and Propagation of Cloud-to-Ground Lightning Observed with a High-Speed Video Camera. – Scientific Reports, 2016, vol. 6, DOI:10.1038/srep39521.
20. Iudin D.I. et al. From Decimeter-Scale Elevated Ionic Conductivity Regions in the Cloud to Lightning Initiation. – Scientific Reports, 2021, vol. 11(1), DOI:10.1038/s41598-021-97321-4.
21. Willett J.C., Davis D.A., Laroche P. An Experimental Study of Positive Leaders Initiating Rocket-Triggered Lightning. – Atmospheric Research, 1999, vol. 51(3), pp. 189–219, DOI:10.1016/S0169-8095(99)00008-3.
22. Pierce E.T. Triggered Lightning and Some Unsuspected Lightning Hazards. – Naval Research Reviews, 1972, pp. 14–28.
23. Zonge K.L., Evans W.H. Prestroke Radiation from Thunderclouds. – Journal of Geophysical Research, 1966, vol. 71(6), pp. 1519–1523.
24. Harvey R.B., Lewis E.A. Radio Mapping of 250- and 925-Megahertz Noise Sources in Clouds. – Journal of Geophysical Research, 1973, vol. 78(12), pp. 1944–1947, DOI:10.1029/JC078i012p01944.
25. Behnke S.A. et al. Investigating the Origin of Continual Radio Frequency Impulses During Explosive Volcanic Eruptions. – Journal of Geophysical Research: Atmospheres, 2018, vol. 123(8), pp. 4157–4174, DOI:10.1002/2017JD027990.
26. Solomon R., Schroeder V., Baker M.B. Lightning Initiati-on – Conventional and Runaway-Breakdown Hypotheses. – Quarterly Journal of the Royal Meteorological Society, 2001, vol. 127(578), pp. 2683–2704, DOI:10.1002/qj.49712757809.
27. Rakov V.A., Uman M.A. Lightning: Physics and Effects. New York: Cambridge University Press, 2003, 687 p.
28. Гуревич А.В., Зыбин К.П. Пробой на убегающих электронах и электрические разряды во время грозы. – Успехи физических наук, 2001, т. 171, № 11, с. 1177–1199.
29. Dwyer J.R. The Initiation of Lightning By Runaway Air Breakdown. – Geophysical Research Letters, 2005, vol. 32(20), DOI:10.1029/2005GL023975.
30. Булатов А.А., Иудин Д.И., Сысоев А.А. Самоорганизующаяся транспортная модель искрового разряда в грозовом облаке. – Известия вузов. Радиофизика, 2020, т. 63, № 2, с. 125–154.
31. Syssoev A.A. et al. Radiation Electric Field Produced by the Lightning Leader Formation in a Thundercloud: Observations and Modeling. – Journal of Atmospheric and Solar-Terrestrial Physics, 2021, vol. 221, DOI:10.1016/j.jastp.2021.105686.
32. Syssoev A.A. et al. Relay Charge Transport in Thunderclouds and Its Role in Lightning Initiation. – Scientific Reports, 2022, vol. 12(1), DOI:10.1038/s41598-022-10722-x.
33. Iudin D.I. et al. Advanced Numerical Model of Lightning Development: Application to Studying the Role of LPCR in Determining Lightning Type. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122(12), pp. 6416–6430, DOI:10.1002/2016jd026261.
34. Niemeyer L., Pietronero L., Wiesmann H.J. Fractal Dimension of Dielectric Breakdown. – Physical Review Letters, 1984, vol. 52(12), pp. 1033–1036, DOI:10.1103/PhysRevLett.52.1033.
35. Wiesmann H.J., Zeller H.R. A Fractal Model of Dielectric Breakdown and Prebreakdown in Solid Dielectrics. – Journal of Applied Physics, 1986, vol. 60(5), pp. 1770–1773, DOI:10.1063/1.337219.
36. Femia N., Niemeyer L., Tucci V. Fractal Characteristics of Electrical Discharges: Experiments and Simulation. – Journal of Physics D: Applied Physics, 1993, vol. 26(4), DOI:10.1088/0022-3727/26/4/014.
37. Dissado L.A., Sweeney P.J.J. Physical Model for Breakdown Structures in Solid Dielectrics. – Physical Review B, 1993, vol. 48(22), pp. 16261–16268, DOI:10.1103/PhysRevB.48.16261.
38. Петров Н.И., Петрова Г.Н. Физические механизмы формирования внутриоблачных разрядов молнии. – Журнал технической физики, 1993, т. 63, № 4, с. 41–49.
39. Петров Н.И., Петрова Г.Н. Математическое моделирование траектории лидерного разряда и молниепоражаемости изолированных и заземленных объектов. – Журнал технической физики, 1995, т. 65, № 5, с. 41–58.
40. Дульзон А.А. и др. Моделирование развития ступенчатого лидера молнии. – Журнал технической физики, 1999, т. 69, № 4, с. 48–53.
41. Mansell E.R. et al. Simulated Three-Dimensional Branched Lightning in a Numerical Thunderstorm Model. – Journal of Geophysical Research: Atmospheres, 2002, vol. 107(D9), DOI:10.1029/2000jd000244.
42. Agoris D.P. et al. A Computational Approach on the Study of Franklin Rod Height Impact on Striking Distance Using a Stochastic Model. – Journal of Electrostatics, 2004, vol. 60(2–4), pp. 175–181, DOI:10.1016/j.elstat.2004.01020.
43. Tan Y., Tao S., Zhu B. Fine-Resolution Simulation of the Channel Structures and Propagation Features of Intracloud Lightning. – Geophysical Research Letters, 2006, vol. 33(9), DOI:10.1029/2005gl025523.
44. Riousset J.A. et al. Three-Dimensional Fractal Modeling of Intracloud Lightning Discharge in a New Mexico Thunderstorm and Comparison with Lightning Mapping Observations. – Journal of Geophysical Research, 2007, vol. 112(D15), DOI:10. 1029/2006JD007621.
45. Mansell E.R., Ziegler C.L., Bruning E.C. Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics. – Journal of the Atmospheric Sciences, 2010, vol. 67(1), pp. 171–194, DOI:10.1175/2009jas2965.1.
46. Wang H. et al. A Numerical Study of the Positive Cloud-to-Ground Flash from the Forward Flank of Normal Polarity Thunderstorm. – Atmospheric Research, 2016, vol. 169, pp. 183–190, DOI:10.1016/j.atmosres.2015.10.011.
47. Iudin D.I. et al. Formation of Decimeter-Scale, Long-Lived Elevated Ionic Conductivity Regions in Thunderclouds. – NPJ Climate and Atmospheric Science, 2019, vol. 2(46), pp. 1–10, DOI:10.1038/s41612-019-0102-8.
48. Иудин Д.И. Зарождение молниевого разряда как индуцированный шумом кинетический переход. – Известия вузов. Радиофизика, 2017, т. 60, № 5, c. 418–441.
49. Gardiner B. et al. Measurements of Initial Potential Gradient and Particle Charges in a Montana Summer Thunderstorm. – Journal of Geophysical Research, 1985, vol. 90(D4), pp. 6079–6086, DOI:10.1029/JD090iD04p06079.
50. Dye J.E. et al. Observations within Two Regions of Charge during Initial Thunderstorm Electrification. – Quarterly Journal of the Royal Meteorological Society, 1988, vol. 114(483), pp. 1271–1290, DOI:10.1002/qj.49711448306.
51. Ziegler C.L. et al. A Model Evaluation of Noninductive Graupel-Ice Charging in the Early Electrification of Mountain Thunderstorm. – Journal of Geophysical Research, 1991, vol. 96(D7), pp. 12833–12855.
52. Ziegler C.L., MacGorman D.R. Observed Lightning Morphology Relative to Modeled Space Charge and Electric Field Distributions in a Tornadic Storm. – Journal of Atmosphere Science, 1994, vol. 51, pp. 833–851, DOI:10.1175/1520-0469(1994)051<0833:OLMRTM>2.0.CO;2.
53. Winn W.P., Schwede G.W., Moore C.B. Measurements of Electric Fields in Thunderclouds. – Journal of Geophysical Research, 1974, vol. 79, pp. 1761–1767, DOI:10.1029/JC079I012P01761.
54. Marshall T.C., McCarthy M.P., Rust W.D. Electric Field Magnitudes and Lightning Initiation in Thunderstorms. – Journal of Geophysical Research, 1995, vol. 100(D4), pp. 7097–7103, DOI:10.1029/95JD00020.
55. Loeb L.B. The Mechanisms of Stepped and Dart Leaders in Cloud-to-Ground Lightning Strokes. – Journal of Geophysical Research, 1966, vol. 71(20), pp. 4711–4721.
56. Phelps C.T. Positive Streamer System Intensification and Its Possible Role in Lightning Initiation. – Journal of Atmospheric and Solar-Terrestrial Physics, 1974, vol. 36(1), pp. 103–111.
57. Griffiths R.F., Phelps C.T. A Model for Lightning Initiation Arising from Positive Corona Streamer Development. – Journal of Geophysical Research, 1976, vol. 81(21), pp. 3671–3676, DOI: 10.1029/JC081I021P03671.
58. Gurevich A.V., Milikh G.M., Roussel-Dupre R. Runaway Electron Mechanism of Air Breakdown and Preconditioning during a Thunderstorm. – Physics Letters A, 1992, vol. 165(5–6), pp. 463–468, DOI:10.1016/0375-9601(92)90348-P.
59. Gurevich A.V., Zybin K.P., Roussel-Dupre R.A. Lightning Initiation by Simultaneous Effect of Runaway Breakdown and Cosmic Ray Showers. – Physics Letters A, 1999, vol. 254(1–2), pp. 79–87, DOI: 10.1016/S0375-9601(99)00091-2.
60. Petersen D. et al. A Brief Review of the Problem of Lightning Initiation and a Hypothesis of Initial Lightning Leader Formation. – Journal of Geophysical Research, 2008, vol. 113(D17), p. D17205, DOI:10.1029/2007JD009036.
61. Liu N. et al. Formation of Streamer Discharges from an Isolated Ionization Column at Subbreakdown Conditions. – Physical Review Letters, 2012, vol. 109(2), p. 025002, DOI:10.1103/PhysRevLett.109.025002.
62. Sadighi S. et al. Streamer Formation and Branching from Model Hydrometeors in Subbreakdown Conditions Inside Thunderclouds. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120(9), pp. 3660–3678, DOI:10.1002/2014JD022724.
63. Dubinova A. et al. Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers. – Physical Review Letters, 2015, vol. 115(1), DOI:10.1103/PhysRevLett.115.015002.
64. Shi F., Liu N., Rassoul H.K. Properties of Relatively Long Streamers Initiated from an Isolated Hydrometeor. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121(12), pp. 7284–7295, DOI:10.1002/2015JD024580.
65. Rison W. et al. Observations of Narrow Bipolar Events Reveal How Lightning is Initiated in Thunderstorms. – Nature Communications, 2016, vol. 7, DOI:10.1038/ncomms10721.
66. Babich L.P. et al. Positive Streamer Initiation from Raindrops in Thundercloud Fields. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121(11), pp. 6393–6403, DOI:10.1002/2016JD024901.
67. Cai Q., Jansky J., Pasko V.P. Initiation of Positive Streamer Corona in Low Thundercloud Fields. – Geophysical Research Letters, 2017, vol. 44(11), pp. 5758–5765, DOI:10.1002/2017GL073107.
68. Cai Q., Jansky J., Pasko V.P. Initiation of Streamers Due to Hydrometeor Collisions in Thunderclouds. – Journal of Geophysical Research: Atmospheres, 2018, vol. 123(14), pp. 7050–7064, DOI:10.1029/2018JD028407.
69. Babich L.P., Bochkov E.I. Initiation of Positive Streamers near Uncharged Ice Hydrometeors in the Thundercloud Field. – Plasma Physics Reports, 2018, vol. 44(5), pp. 533–538, DOI:10.1134/S1063780X18050033.
70. Kostinskiy A.Yu., Marshall T.C., Stolzenburg M. The Mechanism of the Origin and Development of Lightning from Initiating Event to Initial Breakdown Pulses (v.2). – Journal of Geophysical Research: Atmospheres, 2020, vol. 125(22), p. e2020JD033191, DOI:10.1029/2020JD033191
#
1. Iudin D.I., Syssoev A.A., Rakov V.A. Elektrichestvo – in Russ. (Electricity), 2022, No. 11, pp. 13–28.
2. Iudin D.I., Syssoev A.A., Rakov V.A. Elektrichestvo – in Russ. (Electricity), 2022, No. 12, pp. 13–22.
3. Bazelyan E.M., Raizer Yu.P. Iskrovoy razryad (Spark Discharge). М.: МFТI, 1997, 320 p.
4. Dwyer J.R., Uman M.A. The Physics of Lightning. – Physics Reports, 2014, vol. 534(4), pp. 147–241, DOI:10.1016/j.physrep.2013.09.004.
5. Kostinskiy A.Yu. et al. Observation of a New Class of Electric Discharges within Artificial Clouds of Charged Water Droplets and Its Implication for Lightning Initiation within Thunderclouds. – Geophysical Research Letters, 2015, vol. 42, pp. 8165–8171, DOI:10.1002/2015GL065620.
6. Iudin D.I., Trakhtengerts V.Yu., Hayakawa M. Fractal Dynamics of Electric Discharges in a Thundercloud. – Physical Review E, 2003, vol. 68, p. 016601, DOI:10.1103/PhysRevE.68.016601.
7. Kostinskiy A.Yu. et al. Unusual plasma formations produced by positive streamers entering the cloud of negatively charged water droplets. – Journal of Geophysical Research: Atmospheres, 2022, vol. 127(21), p. e2021JD035821, DOI:10.1029/2021JD035821.
8. Nijdam S., Teunissen J., Ebert U. The Physics of Streamer Discharge Phenomena. – Plasma Sources Science and Technology, 2020, vol. 29(10), p. 103001, DOI:10.1088/1361-6595/abaa05.
9. Bazelyan E.M., Rayzer Yu.P. Fizika molnii i molniezashchity (Lightning Physics and Lightning Protection). М.: Fizmatlit, 2001, 320 p.
10. Vargaftik N.B. Spravochnik po teplofizicheskim svoystvam gazov i zhidkostey (Thermophysical Properties of Gases and Liquids, a Reference Book). M.: Nauka, 1972, 720 p.
11. Gorin B.N., Shkilev A.V. Elektrichestvo – in Russ. (Electricity), 1976, No. 6, pp. 31–39.
12. Reess T. et al. An Experimental Study of Negative Discharge in a 1.3 m Point-Plane Air Gap: the Function of the Space Stem in the Propagation Mechanism. – Journal of Physics D: Applied Physics, 1995, vol. 28(11), pp. 2306–2313.
13. Hill J.D., Uman M.A., Jordan D.M. High-Speed Video Observations of a Lightning Stepped Leader. – Journal of Geophysical Research, 2011, vol. 116, p. D16117, DOI:10.1029/2011jd015818.
14. Petersen D.A., Beasley W.H. High-Speed Video Observations of a Natural Negative Stepped Leader and Subsequent Dart-Stepped Leader. – Journal of Geophysical Research: Atmospheres, 2013, vol. 118(21), pp. 12110–12119, DOI:10.1002/2013jd019910.
15. Edens H.E. et al. Photographic Observations of Streamers and Steps in a Cloud-to-Air Negative Leader. – Geophysical Research Letters, 2014, vol. 41(4), pp. 1336–1342, DOI:10.1002/2013GL059180.
16. Jiang R. et al. Channel Branching and Zigzagging in Negative Cloud-to-Ground Lightning. – Scientific Reports, 2017, vol. 7, p. 3457, DOI:10.1038/s41598-017-03686-w.
17. Nijdam S. et al. Probing Background Ionization: Positive Streamers with Varying Pulse Repetition Rate and with a Radioactive Admixture. – Journal of Physics D: Applied Physics, 2011, vol. 44(45), p. 455201, DOI:10.1088/0022-3727/44/45/455201.
18. Starikovskiy A.Yu., Pancheshnyi S.V., Rakitin A.E. Periodic Pulse Discharge Self-Focusing and Streamer-to-Spark Transition in Under-Critical Electric Field. – In 49-th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2011, AIAA 2011-1271.
19. Tran M., Rakov V. Initiation and Propagation of Cloud-to-Ground Lightning Observed with a High-Speed Video Camera. – Scientific Reports, 2016, vol. 6, DOI:10.1038/srep39521.
20. Iudin D.I. et al. From Decimeter-Scale Elevated Ionic Conductivity Regions in the Cloud to Lightning Initiation. – Scientific Reports, 2021, vol. 11(1), DOI:10.1038/s41598-021-97321-4.
21. Willett J.C., Davis D.A., Laroche P. An Experimental Study of Positive Leaders Initiating Rocket-Triggered Lightning. – Atmospheric Research, 1999, vol. 51(3), pp. 189–219, DOI:10.1016/S0169-8095(99)00008-3.
22. Pierce E.T. Triggered Lightning and Some Unsuspected Lightning Hazards. – Naval Research Reviews, 1972, pp. 14–28.
23. Zonge K.L., Evans W.H. Prestroke Radiation from Thunderclouds. – Journal of Geophysical Research, 1966, vol. 71(6), pp. 1519–1523.
24. Harvey R.B., Lewis E.A. Radio Mapping of 250- and 925-Megahertz Noise Sources in Clouds. – Journal of Geophysical Research, 1973, vol. 78(12), pp. 1944–1947, DOI:10.1029/JC078i012p01944.
25. Behnke S.A. et al. Investigating the Origin of Continual Radio Frequency Impulses During Explosive Volcanic Eruptions. – Journal of Geophysical Research: Atmospheres, 2018, vol. 123(8), pp. 4157–4174, DOI:10.1002/2017JD027990.
26. Solomon R., Schroeder V., Baker M.B. Lightning Initiati-on – Conventional and Runaway-Breakdown Hypotheses. – Quarterly Journal of the Royal Meteorological Society, 2001, vol. 127(578), pp. 2683–2704, DOI:10.1002/qj.49712757809.
27. Rakov V.A., Uman M.A. Lightning: Physics and Effects. New York: Cambridge University Press, 2003, 687 p.
28. Gurevich A.V., Zybin K.P. Uspekhi fizicheskih nauk – in Russ. (Successes of Physical Sciences), 2001, vol. 171, No. 11, pp. 1177–1199.
29. Dwyer J.R. The Initiation of Lightning By Runaway Air Breakdown. – Geophysical Research Letters, 2005, vol. 32(20), DOI:10.1029/2005GL023975.
30. Bulatov A.A., Iudin D.I., Sysoev А.А. Izvestiya vuzov. Radiofizika – in Russ. (News of Universities. Radiophysics), 2020, vol. 63, No. 2, pp. 125–154.
31. Syssoev A.A. et al. Radiation Electric Field Produced by the Lightning Leader Formation in a Thundercloud: Observations and Modeling. – Journal of Atmospheric and Solar-Terrestrial Physics, 2021, vol. 221, DOI:10.1016/j.jastp.2021.105686.
32. Syssoev A.A. et al. Relay Charge Transport in Thunderclouds and Its Role in Lightning Initiation. – Scientific Reports, 2022, vol. 12(1), DOI:10.1038/s41598-022-10722-x.
33. Iudin D.I. et al. Advanced Numerical Model of Lightning Development: Application to Studying the Role of LPCR in Determining Lightning Type. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122(12), pp. 6416–6430, DOI:10.1002/2016jd026261.
34. Niemeyer L., Pietronero L., Wiesmann H.J. Fractal Dimension of Dielectric Breakdown. – Physical Review Letters, 1984, vol. 52(12), pp. 1033–1036, DOI:10.1103/PhysRevLett.52.1033.
35. Wiesmann H.J., Zeller H.R. A Fractal Model of Dielectric Breakdown and Prebreakdown in Solid Dielectrics. – Journal of Applied Physics, 1986, vol. 60(5), pp. 1770–1773, DOI:10.1063/1.337219.
36. Femia N., Niemeyer L., Tucci V. Fractal Characteristics of Electrical Discharges: Experiments and Simulation. – Journal of Physics D: Applied Physics, 1993, vol. 26(4), DOI:10.1088/0022-3727/26/4/014.
37. Dissado L.A., Sweeney P.J.J. Physical Model for Breakdown Structures in Solid Dielectrics. – Physical Review B, 1993, vol. 48(22), pp. 16261–16268, DOI:10.1103/PhysRevB.48.16261.
38. Petrov N.I., Petrova G.N. Zhurnal Tekhnicheskoy Fiziki – in Russ. (Technical Physics), 1993, vol. 63(4), pp. 41–49.
39. Petrov N.I., Petrova G.N. Zhurnal Tekhnicheskoy Fiziki – in Russ. (Technical Physics), 1995, vol. 65(5), pp. 41–58.
40. Dulzon A.A. et al. Zhurnal Tekhnicheskoy Fiziki – in Russ. (Technical Physics), 1999, vol. 69(4), pp. 48–53.
41. Mansell E.R. et al. Simulated Three-Dimensional Branched Lightning in a Numerical Thunderstorm Model. – Journal of Geophysical Research: Atmospheres, 2002, vol. 107(D9), DOI:10.1029/2000jd000244.
42. Agoris D.P. et al. A Computational Approach on the Study of Franklin Rod Height Impact on Striking Distance Using a Stochastic Model. – Journal of Electrostatics, 2004, vol. 60(2–4), pp. 175–181, DOI:10.1016/j.elstat.2004.01020.
43. Tan Y., Tao S., Zhu B. Fine-Resolution Simulation of the Channel Structures and Propagation Features of Intracloud Lightning. – Geophysical Research Letters, 2006, vol. 33(9), DOI:10.1029/2005gl025523.
44. Riousset J.A. et al. Three-Dimensional Fractal Modeling of Intracloud Lightning Discharge in a New Mexico Thunderstorm and Comparison with Lightning Mapping Observations. – Journal of Geophysical Research, 2007, vol. 112(D15), DOI:10.1029/ 2006JD007621.
45. Mansell E.R., Ziegler C.L., Bruning E.C. Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics. – Journal of the Atmospheric Sciences, 2010, vol. 67(1), pp. 171–194, DOI:10.1175/2009jas2965.1.
46. Wang H. et al. A Numerical Study of the Positive Cloud-to-Ground Flash from the Forward Flank of Normal Polarity Thunderstorm. – Atmospheric Research, 2016, vol. 169, pp. 183–190, DOI:10.1016/j.atmosres.2015.10.011.
47. Iudin D.I. et al. Formation of Decimeter-Scale, Long-Lived Elevated Ionic Conductivity Regions in Thunderclouds. – NPJ Climate and Atmospheric Science, 2019, vol. 2(46), pp. 1–10, DOI:10.1038/s41612-019-0102-8.
48. Iudin D.I. Izvestiya vuzov. Radiofizika – in Russ. (News of Universities. Radiophysics), 2017, vol. 60, No. 5, pp. 418–441.
49. Gardiner B. et al. Measurements of Initial Potential Gradient and Particle Charges in a Montana Summer Thunderstorm. – Journal of Geophysical Research, 1985, vol. 90(D4), pp. 6079–6086, DOI:10.1029/JD090iD04p06079.
50. Dye J.E. et al. Observations within Two Regions of Charge during Initial Thunderstorm Electrification. – Quarterly Journal of the Royal Meteorological Society, 1988, vol. 114(483), pp. 1271–1290, DOI:10.1002/qj.49711448306.
51. Ziegler C.L. et al. A Model Evaluation of Noninductive Graupel-Ice Charging in the Early Electrification of Mountain Thunderstorm. – Journal of Geophysical Research, 1991, vol. 96(D7), pp. 12833–12855.
52. Ziegler C.L., MacGorman D.R. Observed Lightning Morphology Relative to Modeled Space Charge and Electric Field Distributions in a Tornadic Storm. – Journal of Atmosphere Science, 1994, vol. 51, pp. 833–851, DOI:10.1175/1520-0469(1994)051<0833: OLMRTM>2.0.CO;2.
53. Winn W.P., Schwede G.W., Moore C.B. Measurements of Electric Fields in Thunderclouds. – Journal of Geophysical Research, 1974, vol. 79, pp. 1761–1767, DOI:10.1029/JC079I012P01761.
54. Marshall T.C., McCarthy M.P., Rust W.D. Electric Field Magnitudes and Lightning Initiation in Thunderstorms. – Journal of Geophysical Research, 1995, vol. 100(D4), pp. 7097–7103, DOI:10. 1029/95JD00020.
55. Loeb L.B. The Mechanisms of Stepped and Dart Leaders in Cloud-to-Ground Lightning Strokes. – Journal of Geophysical Research, 1966, vol. 71(20), pp. 4711–4721.
56. Phelps C.T. Positive Streamer System Intensification and Its Possible Role in Lightning Initiation. – Journal of Atmospheric and Solar-Terrestrial Physics, 1974, vol. 36(1), pp. 103–111.
57. Griffiths R.F., Phelps C.T. A Model for Lightning Initiation Arising from Positive Corona Streamer Development. – Journal of Geophysical Research, 1976, vol. 81(21), pp. 3671–3676, DOI:10.1029/JC081I021P03671.
58. Gurevich A.V., Milikh G.M., Roussel-Dupre R. Runaway Electron Mechanism of Air Breakdown and Preconditioning during a Thunderstorm. – Physics Letters A, 1992, vol. 165(5–6), pp. 463–468, DOI:10.1016/0375-9601(92)90348-P.
59. Gurevich A.V., Zybin K.P., Roussel-Dupre R.A. Lightning Initiation by Simultaneous Effect of Runaway Breakdown and Cosmic Ray Showers. – Physics Letters A, 1999, vol. 254(1–2), pp. 79–87, DOI:10.1016/S0375-9601(99)00091-2.
60. Petersen D. et al. A Brief Review of the Problem of Lightning Initiation and a Hypothesis of Initial Lightning Leader Formation. – Journal of Geophysical Research, 2008, vol. 113(D17), p. D17205, DOI:10.1029/2007JD009036.
61. Liu N. et al. Formation of Streamer Discharges from an Isolated Ionization Column at Subbreakdown Conditions. – Physical Review Letters, 2012, vol. 109(2), p. 025002, DOI:10.1103/PhysRevLett.109.025002.
62. Sadighi S. et al. Streamer Formation and Branching from Mo-del Hydrometeors in Subbreakdown Conditions Inside Thunderclouds. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120(9), pp. 3660–3678, DOI:10.1002/2014JD022724.
63. Dubinova A. et al. Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers. – Physical Review Letters, 2015, vol. 115(1), DOI:10.1103/PhysRevLett.115.015002.
64. Shi F., Liu N., Rassoul H.K. Properties of Relatively Long Streamers Initiated from an Isolated Hydrometeor. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121(12), pp. 7284–7295, DOI:10.1002/2015JD024580.
65. Rison W. et al. Observations of Narrow Bipolar Events Reveal How Lightning is Initiated in Thunderstorms. – Nature Communications, 2016, vol. 7, DOI:10.1038/ncomms10721.
66. Babich L.P. et al. Positive Streamer Initiation from Raindrops in Thundercloud Fields. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121(11), pp. 6393–6403, DOI:10.1002/2016JD-024901.
67. Cai Q., Jansky J., Pasko V.P. Initiation of Positive Streamer Corona in Low Thundercloud Fields. – Geophysical Research Letters, 2017, vol. 44(11), pp. 5758–5765, DOI:10.1002/2017GL073107.
68. Cai Q., Jansky J., Pasko V.P. Initiation of Streamers Due to Hydrometeor Collisions in Thunderclouds. – Journal of Geophysical Research: Atmospheres, 2018, vol. 123(14), pp. 7050–7064, DOI:10.1029/2018JD028407.
69. Babich L.P., Bochkov E.I. Initiation of Positive Streamers near Uncharged Ice Hydrometeors in the Thundercloud Field. – Plasma Physics Reports, 2018, vol. 44(5), pp. 533–538, DOI:10.1134/S1063780X18050033.
70. Kostinskiy A.Yu., Marshall T.C., Stolzenburg M. The Mechanism of the Origin and Development of Lightning from Initiating Event to Initial Breakdown Pulses (v.2). – Journal of Geophysical Research: Atmospheres, 2020, vol. 125(22), p. e2020JD033191, DOI:10.1029/2020JD033191.