Синтез оптимального управления тяговым электроприводом на базе асинхронного двигателя с учетом магнитного насыщения и потерь в стали

  • Игорь Олегович Журов
  • Сергей Викторович Байда
  • Станислав Николаевич Флоренцев
  • Павел Иванович Розкаряка
Ключевые слова: асинхронный двигатель, магнитное насыщение, потери в стали, стратегия оптимального управления, максимальный момент на ампер, минимальные потери мощности, полеориентированное векторное управление, тяговый электропривод

Аннотация

В тяговом электроприводе на базе асинхронного двигателя часто используется векторный способ управления при ориентации по вектору потокосцепления ротора. Это позволяет достигать высоких показателей работы двигателя в статическом и динамическом режимах. Однако для получения высокой энергетической эффективности электропривода становится актуальным применение стратегии оптимального управления, что подразумевает формирование при заданном электромагнитном моменте потокообразующей и моментообразующей составляющих тока статора по некоторому определенному закону с целью достижения оптимальной по выбранному критерию работы двигателя. Для тягового электропривода такими критериями обычно являются ток статора или потери мощности (КПД), которые подлежат минимизации. При этом важно учитывать насыщение магнитной системы и потери в стали двигателя, которые оказывают существенное влияние на синтез стратегий оптимального управления. В статье приведены уравнения электромагнитных процессов асинхронного двигателя с короткозамкнутым ротором при полеориентированном векторном управлении с учетом указанных особенностей, а также предложена методика синтеза стратегий оптимального управления при минимизации потерь мощности и тока статора. Показаны отличия подходов к синтезу оптимальных стратегий как без учета, так и с учетом магнитного насыщения.

Биографии авторов

Игорь Олегович Журов

ведущий инженер-программист Лаборатории прикладного программного обеспечения Управления комплектного тягового электрооборудования, ООО «Инжиниринговый центр «Русэлпром», Москва, Россия.

Сергей Викторович Байда

начальник Лаборатории прикладного программного обеспечения Управления комплектного тягового электрооборудования, ООО «Инжиниринговый центр «Русэлпром», Москва, Россия.

Станислав Николаевич Флоренцев

кандидат техн. наук, руководитель Управления комплектного тягового электрооборудования, ООО «Инжиниринговый центр «Русэлпром», Москва, Россия.

Павел Иванович Розкаряка

кандидат техн. наук, доцент, заведующий кафедрой «Электропривод и автоматизация промышленных установок», факультет интеллектуальной электроэнергетики и робототехники, Донецкий национальный технический университет, Донецк, ДНР, Россия.

Литература

1. Kouns H., Lai J.-S., Konrad C.E. Analysis of a Traction Induction Motor Drive Operating under Maximum Efficiency and Maximum Torque per Ampere Conditions. – 19th IEEE Applied Power Electronics Conference and Exposition, 2004, vol. 1, pp. 545–551, DOI:10.1109/APEC.2004.1295860.
2. Liu Y., Bazzi A. Improved Maximum Torque-Per-Ampere Control of Induction Machines by Considering Iron Loss. – IEEE International Electric Machines and Drives Conference (IEMDC), 2017, DOI:10.1109/IEMDC.2017.8002379.
3. Naganathan P., Srinivas S. Maximum Torque Per Ampere Based Direct Torque Control Scheme of IM Drive for Electrical Vehicle Applications. – IEEE 18th International Power Electronics and Motion Control Conference, 2018, pp. 256–261, DOI:10.1109/EPEPEMC.2018.8521987.
4. Hrkel M., Vittek J., Biel Z. Maximum Torque per Ampere Control Strategy of Induction Motor with Iron Losses. – 2012 ELEKTRO, 2012, pp. 185–190, DOI:10.1109/ELEKTRO.2012.6225635.
5. Peresada S. et al. Dynamic Output Feedback Linearizing Control of Saturated Induction Motors with Torque per Ampere Ratio Maximization," 2016 2nd International Conference on Intelligent Energy and Power Systems (IEPS), 2016, DOI:10.1109/IEPS.2016.7521878.
6. Dymko S., Peresada S., Leidhold R. Torque Control of Saturated Induction Motors with Torque per Ampere Ratio Maximization. – 2014 IEEE International Conference on Intelligent Energy and Power Systems (IEPS), 2014, pp. 251–256, DOI:10.1109/IEPS.2014.6874189.
7. Mousavi M.S., Davari S.A. A Novel Maximum Torque Per Ampere and Active Disturbance Rejection Control Considering Core Saturation for Induction Motor. – 9th Annual Power Electronics, Drives Systems and Technologies Conference (PEDSTC), 2018, pp. 318–323, DOI:10.1109/PEDSTC.2018.8343816.
8. Consoli A. et al. Induction Motor Sensorless Control Based on a Maximum Torque per Ampere Approach. –38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003, vol.3, pp. 2005–2011, DOI:10.1109/IAS.2003.1257842.
9. Kwon C. Performance of Adaptive MTPA Torque Per Amp Control at Multiple Operating Points for Induction Motor Drives. – 44th Annual Conference of the IEEE Industrial Electronics Society, 2018, pp. 637–641, DOI:10.1109/IECON.2018.8595146.
10. Popov A. et al. Dynamic Response of FOC Induction Motors Using MTPA Considering Voltage Constraints. –26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED), 2019, DOI:10.1109/IWED.2019.8664402.
11. Zhurov I., Bayda S., Florentsev S. Modeling of a Diesel Locomotive Induction Motor Drive with the Field-oriented Control when Operating in a Limited Voltage and High Rotation Frequency Mode. – 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED), 2021, DOI:10.1109/IWED52055.2021.9376322.
12. Salahmanesh M.A., Zarchi H.A., Hesar H.M. A Non-Linear Technique for MTPA-Based Induction Motor Drive Considering Iron Loss and Saturation Effects. – 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2020, DOI:10.1109/PEDSTC49159.2020.9088415.
13. Pugachev A., Kosmodamianskiy A. Induction Motor Scalar Control System with Power Losses Minimization. – International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2019, DOI:10.1109/ICIEAM.2019.8742951.
14. Mendes E., Baba A., Razek A. Losses Minimization of a Field Oriented Controlled Induction Machine. –7th International Conference on Electrical Machines and Drives, 1995, pp. 310–314, DOI: 10.1049/cp:19950885.
15. Uddin M.N., Nam S.W. New Online Loss-Minimization-Based Control of an Induction Motor Drive. – IEEE Transactions on Power Electronics, 2008, vol. 23, No. 2, pp. 926–933, DOI:10.1109/TPEL.2007.915029.
16. Tolochko O., Kaluhin D., Burmelov O. Speed Vector Control of Induction Motor With Copper and Iron Losses Minimization. – IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2019, pp. 408–413, DOI:10.1109/UKRCON. 2019.8879994.
17. Nam S.W., Uddin M.N. Model-Based Loss Minimization Control of an Induction Motor Drive. – IEEE International Symposium on Industrial Electronics, 2006, pp. 2367–2372, DOI:10.1109/ISIE. 2006.295942.
18. Hassan A., Bazzi A. Adaptive Loss Minimization Technique of Induction Motor Drives Using Extended Kalman Filter. – IEEE International Electric Machines & Drives Conference (IEMDC), 2021, DOI:10.1109/IEMDC47953.2021.9449534.
19. Baba A., Mendes E., Razek A. Losses Minimisation of a Field-Oriented Controlled Induction Machine by Flux Optimisation Accounting for Magnetic Saturation. – IEEE International Electric Machines and Drives Conference Record, 1997, DOI:10.1109/IEMDC.1997.604184.
20. Poirier E., Ghribi M., Kaddouri A. Loss Minimization Control of Induction Motor Drives Based on Genetic Algorithms. – IEEE International Electric Machines and Drives Conference, 2001, pp. 475–478, DOI:10.1109/IEMDC.2001.939348.
21. Odhano S.A. et al. Maximum Efficiency per Torque Direct Flux Vector Control of Induction Motor Drives. – IEEE Transactions on Industry Applications, 2015, 51(6), pp. 4415–4424, DOI:10.1109/TIA.2015.2448682.
22. Zhurov I., Bayda S., Florentsev S. Field-Oriented Control of the Induction Motor as Part of the Shunting Locomotive Powertrain Considering Core Losses and Magnetic Saturation. – 29th International Workshop on Electric Drives: Advances in Power Electronics for Electric Drives (IWED), 2022, DOI:10.1109/IWED54598.2022.9722586.
23. Wang K. et al. Comparison Study of Induction Motor Models Considering Iron Loss for Electric Drives. – Energies, 2019, 12(3), 503, DOI:10.3390/en12030503.
24. Hasegawa M., Doki S., Okuma S. Compensation Method of Stator Iron Loss of Vector-Controlled Induction Motor Using Robust Flux Observer. – Electrical Engineering in Japan, 2000, 137(3), pp. 287–292, DOI:10.1109/AMC.2000.862876.
25. Altas L.H., Sharaf A.M. Modified Induction Motor Drive Speed Control Strategies for Loss Reduction and Efficiency Enhancement. – The Twenty-Third Southeastern Symposium on System Theory, 1991, pp. 39–44, DOI:10.1109/SSST.1991.138508.
26. Zhurov I., Bayda S., Florentsev S. Modeling of a Diesel Locomotive Induction Motor Drive with the Field-Oriented Control when Operating in a Limited Voltage and High Rotation Frequency Mode. – 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED), 2021, DOI:10.1109/IWED52055.2021.9376322.
#
1. Kouns H., Lai J.-S., Konrad C.E. Analysis of a Traction Induction Motor Drive Operating under Maximum Efficiency and Maximum Torque per Ampere Conditions. – 19th IEEE Applied Power Electronics Conference and Exposition, 2004, vol. 1, pp. 545–551, DOI:10.1109/APEC.2004.1295860.
2. Liu Y., Bazzi A. Improved Maximum Torque-Per-Ampere Control of Induction Machines by Considering Iron Loss. – IEEE International Electric Machines and Drives Conference (IEMDC), 2017, DOI:10.1109/IEMDC.2017.8002379.
3. Naganathan P., Srinivas S. Maximum Torque Per Ampere Based Direct Torque Control Scheme of IM Drive for Electrical Vehicle Applications. – IEEE 18th International Power Electronics and Motion Control Conference, 2018, pp. 256–261, DOI:10.1109/EPEPEMC.2018.8521987.
4. Hrkel M., Vittek J., Biel Z. Maximum Torque per Ampere Control Strategy of Induction Motor with Iron Losses. – 2012 ELEKTRO, 2012, pp. 185–190, DOI:10.1109/ELEKTRO.2012.6225635.
5. Peresada S. et al. Dynamic Output Feedback Linearizing Control of Saturated Induction Motors with Torque per Ampere Ratio Maximization," 2016 2nd International Conference on Intelligent Energy and Power Systems (IEPS), 2016, DOI:10.1109/IEPS.2016.7521878.
6. Dymko S., Peresada S., Leidhold R. Torque Control of Saturated Induction Motors with Torque per Ampere Ratio Maximization. – 2014 IEEE International Conference on Intelligent Energy and Power Systems (IEPS), 2014, pp. 251–256, DOI:10.1109/IEPS.2014.6874189.
7. Mousavi M.S., Davari S.A. A Novel Maximum Torque Per Ampere and Active Disturbance Rejection Control Considering Core Saturation for Induction Motor. – 9th Annual Power Electronics, Drives Systems and Technologies Conference (PEDSTC), 2018, pp. 318–323, DOI:10.1109/PEDSTC.2018.8343816.
8. Consoli A. et al. Induction Motor Sensorless Control Based on a Maximum Torque per Ampere Approach. –38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003, vol.3, pp. 2005–2011, DOI:10.1109/IAS.2003.1257842.
9. Kwon C. Performance of Adaptive MTPA Torque Per Amp Control at Multiple Operating Points for Induction Motor Drives. – 44th Annual Conference of the IEEE Industrial Electronics Society, 2018, pp. 637–641, DOI:10.1109/IECON.2018.8595146.
10. Popov A. et al. Dynamic Response of FOC Induction Motors Using MTPA Considering Voltage Constraints. –26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED), 2019, DOI:10.1109/IWED.2019.8664402.
11. Zhurov I., Bayda S., Florentsev S. Modeling of a Diesel Locomotive Induction Motor Drive with the Field-oriented Control when Operating in a Limited Voltage and High Rotation Frequency Mode. – 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED), 2021, DOI:10.1109/IWED52055. 2021.9376322.
12. Salahmanesh M.A., Zarchi H.A., Hesar H.M. A Non-Linear Technique for MTPA-Based Induction Motor Drive Considering Iron Loss and Saturation Effects. – 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2020, DOI:10.1109/PEDSTC 49159.2020.9088415.
13. Pugachev A., Kosmodamianskiy A. Induction Motor Scalar Control System with Power Losses Minimization. – International Conference on Industrial Engineering, Applications and Manufactu-ring (ICIEAM), 2019, DOI:10.1109/ICIEAM.2019.8742951.
14. Mendes E., Baba A., Razek A. Losses Minimization of a Field Oriented Controlled Induction Machine. –7th International Conference on Electrical Machines and Drives, 1995, pp. 310–314, DOI: 10.1049/cp:19950885.
15. Uddin M.N., Nam S.W. New Online Loss-Minimization-Based Control of an Induction Motor Drive. – IEEE Transactions on Power Electronics, 2008, vol. 23, No. 2, pp. 926–933, DOI:10.1109/TPEL.2007.915029.
16. Tolochko O., Kaluhin D., Burmelov O. Speed Vector Control of Induction Motor With Copper and Iron Losses Minimization. – IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2019, pp. 408–413, DOI:10.1109/UKRCON.2019.8879994.
17. Nam S.W., Uddin M.N. Model-Based Loss Minimization Control of an Induction Motor Drive. – IEEE International Symposium on Industrial Electronics, 2006, pp. 2367–2372? DOI:10.1109/ISIE.2006.295942.
18. Hassan A., Bazzi A. Adaptive Loss Minimization Technique of Induction Motor Drives Using Extended Kalman Filter. – IEEE International Electric Machines & Drives Conference (IEMDC), 2021, DOI:10.1109/IEMDC47953.2021.9449534.
19. Baba A., Mendes E., Razek A. Losses Minimisation of a Field-Oriented Controlled Induction Machine by Flux Optimisation Accounting for Magnetic Saturation. – IEEE International Electric Machines and Drives Conference Record, 1997, DOI:10.1109/IEMDC.1997.604184.
20. Poirier E., Ghribi M., Kaddouri A. Loss Minimization Control of Induction Motor Drives Based on Genetic Algorithms. – IEEE International Electric Machines and Drives Conference, 2001, pp. 475–478, DOI:10.1109/IEMDC.2001.939348.
21. Odhano S.A. et al. Maximum Efficiency per Torque Direct Flux Vector Control of Induction Motor Drives. – IEEE Transactions on Industry Applications, 2015, 51(6), pp. 4415–4424, DOI:10.1109/TIA.2015.2448682.
22. Zhurov I., Bayda S., Florentsev S. Field-Oriented Control of the Induction Motor as Part of the Shunting Locomotive Powertrain Considering Core Losses and Magnetic Saturation. – 29th International Workshop on Electric Drives: Advances in Power Electronics for Electric Drives (IWED), 2022, DOI:10.1109/IWED54598.2022.9722586.
23. Wang K. et al. Comparison Study of Induction Motor Models Considering Iron Loss for Electric Drives. – Energies, 2019, 12(3), 503, DOI:10.3390/en12030503.
24. Hasegawa M., Doki S., Okuma S. Compensation Method of Stator Iron Loss of Vector-Controlled Induction Motor Using Robust Flux Observer. – Electrical Engineering in Japan, 2000, 137(3), pp. 287–292, DOI:10.1109/AMC.2000.862876.
25. Altas L.H., Sharaf A.M. Modified Induction Motor Drive Speed Control Strategies for Loss Reduction and Efficiency Enhancement. – The Twenty-Third Southeastern Symposium on System Theory, 1991, pp. 39–44, DOI:10.1109/SSST.1991.138508.
26. Zhurov I., Bayda S., Florentsev S. Modeling of a Diesel Locomotive Induction Motor Drive with the Field-Oriented Control when Operating in a Limited Voltage and High Rotation Frequency Mode. – 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED), 2021, DOI:10.1109/IWED 52055.2021.9376322.
Опубликован
2023-01-26
Раздел
Статьи