Криогенное охлаждение в электронике: современное состояние и перспективы
Аннотация
В статье дается обзор современного состояния технологии криогенного охлаждения в электронике и оцениваются перспективы развития этого направления. Анализ научных публикаций, относящихся к широкому временному периоду, позволил выявить основные тенденции и проблемы. Полученные результаты свидетельствуют о скором внедрении криогенного охлаждения в силовую полупроводниковую технику. Область применения рассматриваемой технологии в первую очередь охватывает системы, которые уже содержат контур криогенного охлаждения. В этом случае можно ожидать снижения массы и повышения КПД силовых полупроводниковых преобразователей при осознанном подходе к их проектированию. Такой подход возможен при наличии полной информации о характеристиках различных электронных компонентов при криогенных температурах. Основное внимание уделено анализу практической значимости проведенных на сегодняшний день исследований и предпринята попытка ответить на вопрос о возможности получения экономического эффекта при использовании данной технологии в различных областях электротехники
Литература
2. Hassan M.U. et al. Review of Power Electronics Converters and Associated Components/Systems at Cryogenic Temperatures. – International Journal of Powertrains, 2022, vol. 11, No. 2/3, DOI: 10.1504/IJPT.2022.124745.
3. Jia C., Forsyth A.J. Evaluation of Semiconductor Losses in Cryogenic DC-DC Converters, CES/IEEE 5th International Power Electronics and Motion Control Conference, 2006, DOI: 10.1109/IPEMC.2006.4778204.
4. Gui H. et al. Characterization of 1. 2 kV SiC Power Mosfets at Cryogenic Temperatures, IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 7010–7015, DOI: 10.1109/ECCE.2018.8557442.
5. Chen H. et al. Cryogenic Characterization of Commercial SiC Power Mosfets. – Materials Science Forum. Grenoble, France: Trans Tech Publications Ltd., 2015, pp. 777–780, DOI: 10.4028/www.scientific.net/MSF.821-823.777.
6. Ostapchuk M. et al. Research of Static and Dynamic Properties of Power Semiconductor Diodes at Low and Cryogenic Temperatures. – Inventions, 2022, vol. 7, No. 4, DOI: 10.3390/inventions7040096.
7. Dotsenko V.V. et al. Integrated Cryogenic Electronics Testbed (Ice-t) for Evaluation of Superconductor and Cryo-Semiconductor Integrated Circuits. – IOP Conference Series: Materials Science and Engineering, 2017, vol. 171, DOI: 10.1088/1757-899X/171/1/012145.
8. Hossain M.M. et al. Cryogenic Characterization and Modeling of Silicon IGBT for Hybrid Aircraft Application. – IEEE Aerospace Conference, 2021, DOI: 10.1109/AERO50100.2021.9438422.
9. Bailey W. et al. A Cryogenic DC-DC Power Converter for a 100 kW Synchro, Nous Hts Generator at Liquid Nitrogen Temperatures. – Physics Procedia, 2012, vol. 36, DOI: 10.1016/j.phpro.2012.06.096.
10. Graber L. et al. Cryogenic Power Electronics at Megawatt-Scale Using a New Type of Press-Pack IGBT. – IOP Conference Series: Materials Science and Engineering, 2017, vol. 279, DOI: 10.1088/1757-899X/279/1/012011.
11. Elwakeel A. et al. Characterizing Semiconductor Devices for All-Electric Aircraft. – IEEE Access, 2023, vol. 11, DOI: 10.1109/ACCESS.2023.3279088.
12. Chen Y. et al. Experimental Investigations of State-of-the-Art 650 V Class Power MOSFETs for Cryogenic Power Conversion at 77 K. – IEEE Journal of the Electron Devices Society, 2018, vol. 6, DOI: 10.1109/JEDS.2017.2761451.
13. Ward R.R. et al. SiGe Semiconductor Devices for Cryogenic Power Electronics – IV. – 21st Annual IEEE Applied Power Electronics Conference and Exposition, 2006, DOI: 10.1109/APEC.2006.1620766.
14. Wei Y. et al. Dynamic Characterizations of 650 V, 900 V and 1200 V SiC MOSFETs under Low Temperatures. – IEEE Aerospace Conference (AERO), 2022, DOI: 10.1109/AERO53065.2022.9843464.
15. Büttner S., März M. Profitability of Low-Temperature Power Electronics and Potential Applications. – Cryogenics, 2022, vol. 121, DOI: 10.1016/j.cryogenics.2021.103392.
16. Cecere D. et al. A Review on Hydrogen Industrial Aerospace Applications. – International Journal of Hydrogen Energy, 2014,vol. 39, No. 20, DOI: 10.1016/j.ijhydene.2014.04.126.
17. Tsatsaronis G., Morosuk T. Advanced Exergetic Analysis of a Novel System for Generating Electricity and Vaporizing Liquefied Natural Gas. – Energy, 2010, vol. 35(2), pp. 820–829, DOI: 10.1016/j.energy.2009.08.019.
18. Алексеев А.О. и др. Трехфазный корректор коэффициента мощности с криогенным охлаждением для перспективных авиационных систем электроснабжения. – Электричество, 2024, № 1, с. 10–17.
19. Татуйко П.С. и др. Перспективы применения ВТСП-технологий для электроэнергетического комплекса транспортных средств. – Электротехника, 2021, № 9, с. 47–51.
20. Weng F. et al. Transient Test and AC Loss Study of a Cryogenic Propulsion Unit for All Electric Aircraft. – IEEE Access, 2021, vol. 9, DOI: 10.1109/ACCESS.2021.3073071.
21. Hassan M. et al. Design and Validation of a 20 kVA, Fully Cryogenic, Two-Level Gan-Based Current Source Inverter for Full Electric Aircrafts. – IEEE Transactions on Transportation Electrification, 2022, vol. 8, No. 4, DOI: 10.1109/TTE.2022.3176842.
22. Li H. et al. A Power-Electronics Free Protection Device for Superconducting Electrical Propulsion Aircraft. – IEEE Transactions on Transportation Electrification, 2022, vol. 8, No. 4, DOI: 10.1109/TTE.2022.3175895.
23. Curcic T., Wolf S.A. Superconducting Hybrid Power Electronics for Military Systems. – IEEE Transactions on Applied Superconductivity, 2005, vol. 15, No. 2, DOI: 10.1109/TASC.2005.849667.
24. Kovalev K.L. et al. Principal Analysis of Hybrid Power Systems with HTS Electrical Machines. – Journal of Physics: Conference Series, 2020, vol. 1559, No. 1, DOI: 10.1088/1742-6596/1559/1/012149.
25. Mueller O.M. Efficient Two-Level Cryogenic Power Distribution System. – AIP Conference Proceedings, 2002, DOI: 10. 1063/1.1472210.
26. Liu G., Li Y. Current Status and Key Issues of HVDC Transmission Research: A Brief Review. – 7th International Symposium on Mechatronics and Industrial Informatics, 2021, DOI: 10.1109/ISMII52409.2021.00011.
27. Kalair A. et al. Comparative Study of HVAC and HVDC Transmission Systems. – Renewable and Sustainable Energy Reviews, 2016, vol. 59, DOI: 10.1016/j.rser.2015.12.288.
28. Lin W. et al. LNG (Liquefied Natural Gas): A Necessary Part in China’s Future Energy Infrastructure. – Energy, 2010, vol. 35, No. 11, DOI: 10.1016/j.energy.2009.04.036.
29. Qiu Q., Xiao L. Review of Research Activities of Hybrid Superconducting Energy Pipeline in China. – Электричество, 2022, № 12, с. 4–12.
30. Kawaguchi S., Mizuno S., Oyama Y. Long-Term Cooling Strategy for the Primary Containment Vessel of the Kashiwazaki-Kariwa Nuclear Power Station in a Severe Accident. – 25th International Conference on Nuclear Engineering, 2017, DOI: 10.1115/ICONE25-67317.
31. Du X. et al. Multi-Time Scale Lifetime Evaluation of the Device in the Renewable Energy System. – Thermal Reliability of Power Semiconductor Device in the Renewable Energy System. CPSS Power Electronics Series. Singapore: Springer Nature, 2022, pp. 107–136, DOI: 10.1007/978-981-19-3132-1_5.
32. Modestov K.A. et al. Problem of Cryogenic Cooling of Semiconductor Switches for Power Convertors. – Amazonia Investiga, 2019, vol. 8, No. 24.
33. Rodriguez J. et al. Direct Detection of Anchor Damping in Mems Tuning Fork Resonators. – Journal of Microelectromechanical Systems, 2018, vol. 27, No. 5, DOI: 10.1109/JMEMS.2018.2859958.
34. Hahn T.A. Thermal Expansion of Copper from 20 to 800 K – Standard Reference Material 736. – Journal of Applied Physics, 1970, vol. 41, No. 13, DOI: 10.1063/1.1658614.
35. Chen R. et al. Overcurrent and Short-Circuit Capability Experimental Investigation for GaN HEMT at Cryogenic Temperature. – IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, DOI: 10.1109/APEC42165.2021.9487188.
36. Wei Y. et al. Overcurrent Test for GaN HEMT with Cryogenic Cooling. – IEEE Transportation Electrification Conference and Expo, Asia-Pacific, 2022, DOI: 10.1109/ITECAsia-Pacific56316.2022.9942147.
37. Gui H. et al. Review of Power Electronics Components at Cryogenic Temperatures. – IEEE Transactions on Power Electronics, 2020, vol. 35, No. 5, DOI: 10.1109/TPEL.2019.2944781.
38. Elwakeel A. et al. Study of Power Devices for Use in Phase-Leg at Cryogenic Temperature. – IEEE Transactions on Applied Superconductivity, 2021, vol. 31, No. 5, DOI: 10.1109/TASC.2021.3064544.
39. Chowdhury S. et al. Comparative Evaluation of Commercial 1200 V SiC Power MOSFETs Using Diagnostic I-V Characterization at Cryogenic Temperatures. – European Conference on Silicon Carbide & Related Materials, 2016, DOI: 10.4028/www.scientific.net/MSF.897.545.
40. Barth C.B. et al. Design, Operation, and Loss Characterization of a 1 kW GaN-Based 3-Level Converter at Cryogenic Temperatures. – IEEE Transactions on Power Electronics, 2020, vol. 35, No. 11, DOI: 10.1109/TPEL.2020.2989310.
41. Park C. et al. Cryogenic Power Electronics: Press-Pack IGBT Modules. – IOP Conference Series: Materials Science and Engineering, 2020, vol. 756, No. 1, DOI: 10.1088/1757-899X/756/1/012009.
42. Wadsworth A. et al. GaN-Based Cryogenic Temperature Power Electronics for Superconducting Motors in Cryo-Electric Aircraft. – Superconductor Science and Technology, 2023, vol. 36, No. 9, DOI: 10.1088/1361-6668/ace5e7.
43. Qi J. et al. Comprehensive Assessment of Avalanche Operating Boundary of SiC Planar/Trench MOSFET in Cryogenic Applications. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 6, DOI: 10.1109/TPEL.2020.3034902.
44. Ren R. et al. Characterization of 650 V Enhancement-Mode GaN HEMT at Cryogenic Temperatures. – IEEE Energy Conversion Congress and Exposition, 2018, DOI: 10.1109/ECCE.2018.8557868.
45. Ostapchuk M.A. et al. Evaluation of the Self-Heating Effect in the Static Characterization of Cryo-Cooled Power Diodes. – IEEE 24th International Conference of Young Professionals in Electron Devices and Materials, 2023, DOI: 10.1109/EDM58354.2023.10225131.
46. Wei Y. et al. Power Relay Based Multiple Device Cryogenic Characterization Method and Results. – IEEE Open Journal of Industry Applications, 2022, vol. 3, DOI: 10.1109/OJIA.2022.3195278.
47. Dvornikov O.V. et al. Software and Hardware Complex for Studying Semiconductor Devices at Low, Incl. Cryogenic, Temperatures. – 2nd International Ural Conference on Measurements, 2017, DOI: 10.1109/URALCON.2017.8120719.
48. Ghosh A. et al. A Cost-Effective, Compact, Automatic Testing System for Dynamic Characterization of Power Semiconductor Devices. – IEEE Energy Conversion Congress and Exposition (ECCE), 2019, DOI: 10.1109/ECCE.2019.8912307.
---
Исследование выполнено за счет гранта Российского научного фонда № 23-19-00624, https://rscf.ru/project/23-19-00624/
#
1. Collaudin B., Rando N. Cryogenics in Space: A Review of the Missions and of the Technologies. – Cryogenics, 2000, vol. 40, No. 12, pp. 797–819, DOI: 10.1016/S0011-2275(01)00035-2.
2. Hassan M.U. et al. Review of Power Electronics Converters and Associated Components/Systems at Cryogenic Temperatures. – International Journal of Powertrains, 2022, vol. 11, No. 2/3, DOI: 10. 1504/IJPT.2022.124745.
3. Jia C., Forsyth A.J. Evaluation of Semiconductor Losses in Cryogenic DC-DC Converters, CES/IEEE 5th International Power Electronics and Motion Control Conference, 2006, DOI: 10.1109/IPEMC.2006.4778204.
4. Gui H. et al. Characterization of 1. 2 kV SiC Power Mosfets at Cryogenic Temperatures, IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 7010–7015, DOI: 10.1109/ECCE.2018.8557442.
5. Chen H. et al. Cryogenic Characterization of Commercial SiC Power Mosfets. – Materials Science Forum. Grenoble, France: Trans Tech Publications Ltd., 2015, pp. 777–780, DOI: 10.4028/www.scientific.net/MSF.821-823.777.
6. Ostapchuk M. et al. Research of Static and Dynamic Properties of Power Semiconductor Diodes at Low and Cryogenic Temperatures. – Inventions, 2022, vol. 7, No. 4, DOI: 10.3390/inventions7040096.
7. Dotsenko V.V. et al. Integrated Cryogenic Electronics Testbed (Ice-t) for Evaluation of Superconductor and Cryo-Semiconductor Integrated Circuits. – IOP Conference Series: Materials Science and Engineering, 2017, vol. 171, DOI: 10.1088/1757-899X/171/1/012145.
8. Hossain M.M. et al. Cryogenic Characterization and Modeling of Silicon IGBT for Hybrid Aircraft Application. – IEEE Aerospace Conference, 2021, DOI: 10.1109/AERO50100.2021.9438422.
9. Bailey W. et al. A Cryogenic DC-DC Power Converter for a 100 kW Synchro, Nous Hts Generator at Liquid Nitrogen Temperatures. – Physics Procedia, 2012, vol. 36, DOI: 10.1016/j.phpro.2012.06.096.
10. Graber L. et al. Cryogenic Power Electronics at Megawatt-Scale Using a New Type of Press-Pack IGBT. – IOP Conference Series: Materials Science and Engineering, 2017, vol. 279, DOI: 10.1088/1757-899X/279/1/012011.
11. Elwakeel A. et al. Characterizing Semiconductor Devices for All-Electric Aircraft. – IEEE Access, 2023, vol. 11, DOI: 10.1109/ACCESS.2023.3279088.
12. Chen Y. et al. Experimental Investigations of State-of-the-Art 650 V Class Power MOSFETs for Cryogenic Power Conversion at 77 K. –IEEE Journal of the Electron Devices Society, 2018, vol. 6, DOI: 10.1109/JEDS.2017.2761451.
13. Ward R.R. et al. SiGe Semiconductor Devices for Cryogenic Power Electronics – IV. – 21st Annual IEEE Applied Power Electronics Conference and Exposition, 2006, DOI: 10.1109/APEC.2006.1620766.
14. Wei Y. et al. Dynamic Characterizations of 650 V, 900 V and 1200 V SiC MOSFETs under Low Temperatures. – IEEE Aerospace Conference (AERO), 2022, DOI: 10.1109/AERO53065.2022.9843464.
15. Büttner S., März M. Profitability of Low-Temperature Power Electronics and Potential Applications. – Cryogenics, 2022, vol. 121, DOI: 10.1016/j.cryogenics.2021.103392.
16. Cecere D. et al. A Review on Hydrogen Industrial Aerospace Applications. – International Journal of Hydrogen Energy, 2014, vol. 39, No. 20, DOI: 10.1016/j.ijhydene.2014.04.126.
17. Tsatsaronis G., Morosuk T. Advanced Exergetic Analysis of a Novel System for Generating Electricity and Vaporizing Liquefied Natural Gas. – Energy, 2010, vol. 35(2), pp. 820–829, DOI: 10.1016/j.energy.2009.08.019.
18. Alekseev А.О. et al. Elektrichestvo – in Russ. (Electricity), 2024, No. 1, pp. 10–17.
19. Tatuyko P.S. et al. Elektrotekhnika – in Russ. (Electrical Engineering), 2021, No. 9, pp. 47–51.
20. Weng F. et al. Transient Test and AC Loss Study of a Cryogenic Propulsion Unit for All Electric Aircraft. – IEEE Access, 2021, vol. 9, DOI: 10.1109/ACCESS.2021.3073071.
21. Hassan M. et al. Design and Validation of a 20 kVA, Fully Cryogenic, Two-Level Gan-Based Current Source Inverter for Full Electric Aircrafts. – IEEE Transactions on Transportation Electrification, 2022, vol. 8, No. 4, DOI: 10.1109/TTE.2022.3176842.
22. Li H. et al. A Power-Electronics Free Protection Device for Superconducting Electrical Propulsion Aircraft. – IEEE Transactions on Transportation Electrification, 2022, vol. 8, No. 4, DOI: 10.1109/TTE.2022.3175895.
23. Curcic T., Wolf S.A. Superconducting Hybrid Power Electronics for Military Systems. – IEEE Transactions on Applied Superconductivity, 2005, vol. 15, No. 2, DOI: 10.1109/TASC.2005. 849667.
24. Kovalev K.L. et al. Principal Analysis of Hybrid Power Systems with HTS Electrical Machines. – Journal of Physics: Conference Series, 2020, vol. 1559, No. 1, DOI: 10.1088/1742-6596/1559/1/012149.
25. Mueller O.M. Efficient Two-Level Cryogenic Power Distribution System. – AIP Conference Proceedings, 2002, DOI: 10. 1063/1.1472210.
26. Liu G., Li Y. Current Status and Key Issues of HVDC Transmission Research: A Brief Review. – 7th International Symposium on Mechatronics and Industrial Informatics, 2021, DOI: 10.1109/ISMII52409.2021.00011.
27. Kalair A. et al. Comparative Study of HVAC and HVDC Transmission Systems. – Renewable and Sustainable Energy Reviews, 2016, vol. 59, DOI: 10.1016/j.rser.2015.12.288.
28. Lin W. et al. LNG (Liquefied Natural Gas): A Necessary Part in China’s Future Energy Infrastructure. – Energy, 2010, vol. 35, No. 11, DOI: 10.1016/j.energy.2009.04.036.
29. Qiu Q., Xiao L. Elektrichestvo – in Russ. (Electricity), 2022, No. 12, pp. 4–12.
30. Kawaguchi S., Mizuno S., Oyama Y. Long-Term Cooling Strategy for the Primary Containment Vessel of the Kashiwazaki-Kariwa Nuclear Power Station in a Severe Accident. – 25th Inter-national Conference on Nuclear Engineering, 2017, DOI: 10.1115/ICONE25-67317.
31. Du X. et al. Multi-Time Scale Lifetime Evaluation of the Device in the Renewable Energy System. – Thermal Reliability of Power Semiconductor Device in the Renewable Energy System. CPSS Power Electronics Series. Singapore: Springer Nature, 2022, pp. 107–136, DOI: 10.1007/978-981-19-3132-1_5.
32. Modestov K.A. et al. Problem of Cryogenic Cooling of Semiconductor Switches for Power Convertors. – Amazonia Investiga, 2019, vol. 8, No. 24.
33. Rodriguez J. et al. Direct Detection of Anchor Damping in Mems Tuning Fork Resonators. – Journal of Microelectromechanical Systems, 2018, vol. 27, No. 5, DOI: 10.1109/JMEMS.2018.2859958.
34. Hahn T.A. Thermal Expansion of Copper from 20 to 800 K – Standard Reference Material 736. – Journal of Applied Physics, 1970, vol. 41, No. 13, DOI: 10.1063/1.1658614.
35. Chen R. et al. Overcurrent and Short-Circuit Capability Experimental Investigation for GaN HEMT at Cryogenic Temperature. – IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, DOI: 10.1109/APEC42165.2021.9487188.
36. Wei Y. et al. Overcurrent Test for GaN HEMT with Cryogenic Cooling. – IEEE Transportation Electrification Conference and Expo, Asia-Pacific, 2022, DOI: 10.1109/ITECAsia-Pacific56316.2022.9942147.
37. Gui H. et al. Review of Power Electronics Components at Cryogenic Temperatures. – IEEE Transactions on Power Electronics, 2020, vol. 35, No. 5, DOI: 10.1109/TPEL.2019.2944781.
38. Elwakeel A. et al. Study of Power Devices for Use in Phase-Leg at Cryogenic Temperature. – IEEE Transactions on Applied Superconductivity, 2021, vol. 31, No. 5, DOI: 10.1109/TASC.2021.3064544.
39. Chowdhury S. et al. Comparative Evaluation of Commercial 1200 V SiC Power MOSFETs Using Diagnostic I-V Characterization at Cryogenic Temperatures. – European Conference on Silicon Carbide & Related Materials, 2016, DOI: 10.4028/www.scientific.net/MSF.897.545.
40. Barth C.B. et al. Design, Operation, and Loss Characterization of a 1 kW GaN-Based 3-Level Converter at Cryogenic Temperatures. – IEEE Transactions on Power Electronics, 2020, vol. 35, No. 11, DOI: 10.1109/TPEL.2020.2989310.
41. Park C. et al. Cryogenic Power Electronics: Press-Pack IGBT Modules. – IOP Conference Series: Materials Science and Engineering, 2020, vol. 756, No. 1, DOI: 10.1088/1757-899X/756/1/012009.
42. Wadsworth A. et al. GaN-Based Cryogenic Temperature Power Electronics for Superconducting Motors in Cryo-Electric Aircraft. – Superconductor Science and Technology, 2023, vol. 36, No. 9, DOI: 10.1088/1361-6668/ace5e7.
43. Qi J. et al. Comprehensive Assessment of Avalanche Operating Boundary of SiC Planar/Trench MOSFET in Cryogenic Applications. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 6, DOI: 10.1109/TPEL.2020.3034902.
44. Ren R. et al. Characterization of 650 V Enhancement-Mode GaN HEMT at Cryogenic Temperatures. – IEEE Energy Conversion Congress and Exposition, 2018, DOI: 10.1109/ECCE.2018.8557868.
45. Ostapchuk M.A. et al. Evaluation of the Self-Heating Effect in the Static Characterization of Cryo-Cooled Power Diodes. – IEEE 24th International Conference of Young Professionals in Electron Devices and Materials, 2023, DOI: 10.1109/EDM58354.2023.10225131.
46. Wei Y. et al. Power Relay Based Multiple Device Cryogenic Characterization Method and Results. – IEEE Open Journal of Industry Applications, 2022, vol. 3, DOI: 10.1109/OJIA.2022.3195278.
47. Dvornikov O.V. et al. Software and Hardware Complex for Studying Semiconductor Devices at Low, Incl. Cryogenic, Temperatures. – 2nd International Ural Conference on Measurements, 2017, DOI: 10.1109/URALCON.2017.8120719.
48. Ghosh A. et al. A Cost-Effective, Compact, Automatic Testing System for Dynamic Characterization of Power Semiconductor Devices. – IEEE Energy Conversion Congress and Exposition (ECCE), 2019, DOI: 10.1109/ECCE.2019.8912307
---
The research was financially supported by the Russian Science Foundation, grant No. 23-19-00624, https://rscf.ru/project/23-19-00624/