Cryogenic Cooling in Electronics: The Current State and Future Prospects
Abstract
The current state of cryogenic cooling technology in electronics is reviewed, and prospects for the development of this area are estimated. Scientific papers published for a wide period of time were analyzed, and the main trends and problems have been identified based on the analysis results. The results obtained testify that cryogenic cooling will soon be introduced into power semiconductor technology. Primarily, the application field of the technology in question encompasses systems that already contain a cryogenic cooling loop. Expectedly, the use of cryogenic cooling can lead to a decrease in weight and an increase in the efficiency of power semiconductor converters provided that well-thought approach to their design is applied. This approach is possible if there is complete information about the characteristics of various electronic components at cryogenic temperatures. The main attention is paid to analyzing the practical significance of the investigations that have been carried out to date, and an attempt is made to answer the question of the possibility to obtain an economic gain when using this technology in various fields of electrical engineering.
References
2. Hassan M.U. et al. Review of Power Electronics Converters and Associated Components/Systems at Cryogenic Temperatures. – International Journal of Powertrains, 2022, vol. 11, No. 2/3, DOI: 10.1504/IJPT.2022.124745.
3. Jia C., Forsyth A.J. Evaluation of Semiconductor Losses in Cryogenic DC-DC Converters, CES/IEEE 5th International Power Electronics and Motion Control Conference, 2006, DOI: 10.1109/IPEMC.2006.4778204.
4. Gui H. et al. Characterization of 1. 2 kV SiC Power Mosfets at Cryogenic Temperatures, IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 7010–7015, DOI: 10.1109/ECCE.2018.8557442.
5. Chen H. et al. Cryogenic Characterization of Commercial SiC Power Mosfets. – Materials Science Forum. Grenoble, France: Trans Tech Publications Ltd., 2015, pp. 777–780, DOI: 10.4028/www.scientific.net/MSF.821-823.777.
6. Ostapchuk M. et al. Research of Static and Dynamic Properties of Power Semiconductor Diodes at Low and Cryogenic Temperatures. – Inventions, 2022, vol. 7, No. 4, DOI: 10.3390/inventions7040096.
7. Dotsenko V.V. et al. Integrated Cryogenic Electronics Testbed (Ice-t) for Evaluation of Superconductor and Cryo-Semiconductor Integrated Circuits. – IOP Conference Series: Materials Science and Engineering, 2017, vol. 171, DOI: 10.1088/1757-899X/171/1/012145.
8. Hossain M.M. et al. Cryogenic Characterization and Modeling of Silicon IGBT for Hybrid Aircraft Application. – IEEE Aerospace Conference, 2021, DOI: 10.1109/AERO50100.2021.9438422.
9. Bailey W. et al. A Cryogenic DC-DC Power Converter for a 100 kW Synchro, Nous Hts Generator at Liquid Nitrogen Temperatures. – Physics Procedia, 2012, vol. 36, DOI: 10.1016/j.phpro.2012.06.096.
10. Graber L. et al. Cryogenic Power Electronics at Megawatt-Scale Using a New Type of Press-Pack IGBT. – IOP Conference Series: Materials Science and Engineering, 2017, vol. 279, DOI: 10.1088/1757-899X/279/1/012011.
11. Elwakeel A. et al. Characterizing Semiconductor Devices for All-Electric Aircraft. – IEEE Access, 2023, vol. 11, DOI: 10.1109/ACCESS.2023.3279088.
12. Chen Y. et al. Experimental Investigations of State-of-the-Art 650 V Class Power MOSFETs for Cryogenic Power Conversion at 77 K. – IEEE Journal of the Electron Devices Society, 2018, vol. 6, DOI: 10.1109/JEDS.2017.2761451.
13. Ward R.R. et al. SiGe Semiconductor Devices for Cryogenic Power Electronics – IV. – 21st Annual IEEE Applied Power Electronics Conference and Exposition, 2006, DOI: 10.1109/APEC.2006.1620766.
14. Wei Y. et al. Dynamic Characterizations of 650 V, 900 V and 1200 V SiC MOSFETs under Low Temperatures. – IEEE Aerospace Conference (AERO), 2022, DOI: 10.1109/AERO53065.2022.9843464.
15. Büttner S., März M. Profitability of Low-Temperature Power Electronics and Potential Applications. – Cryogenics, 2022, vol. 121, DOI: 10.1016/j.cryogenics.2021.103392.
16. Cecere D. et al. A Review on Hydrogen Industrial Aerospace Applications. – International Journal of Hydrogen Energy, 2014,vol. 39, No. 20, DOI: 10.1016/j.ijhydene.2014.04.126.
17. Tsatsaronis G., Morosuk T. Advanced Exergetic Analysis of a Novel System for Generating Electricity and Vaporizing Liquefied Natural Gas. – Energy, 2010, vol. 35(2), pp. 820–829, DOI: 10.1016/j.energy.2009.08.019.
18. Алексеев А.О. и др. Трехфазный корректор коэффициента мощности с криогенным охлаждением для перспективных авиационных систем электроснабжения. – Электричество, 2024, № 1, с. 10–17.
19. Татуйко П.С. и др. Перспективы применения ВТСП-технологий для электроэнергетического комплекса транспортных средств. – Электротехника, 2021, № 9, с. 47–51.
20. Weng F. et al. Transient Test and AC Loss Study of a Cryogenic Propulsion Unit for All Electric Aircraft. – IEEE Access, 2021, vol. 9, DOI: 10.1109/ACCESS.2021.3073071.
21. Hassan M. et al. Design and Validation of a 20 kVA, Fully Cryogenic, Two-Level Gan-Based Current Source Inverter for Full Electric Aircrafts. – IEEE Transactions on Transportation Electrification, 2022, vol. 8, No. 4, DOI: 10.1109/TTE.2022.3176842.
22. Li H. et al. A Power-Electronics Free Protection Device for Superconducting Electrical Propulsion Aircraft. – IEEE Transactions on Transportation Electrification, 2022, vol. 8, No. 4, DOI: 10.1109/TTE.2022.3175895.
23. Curcic T., Wolf S.A. Superconducting Hybrid Power Electronics for Military Systems. – IEEE Transactions on Applied Superconductivity, 2005, vol. 15, No. 2, DOI: 10.1109/TASC.2005.849667.
24. Kovalev K.L. et al. Principal Analysis of Hybrid Power Systems with HTS Electrical Machines. – Journal of Physics: Conference Series, 2020, vol. 1559, No. 1, DOI: 10.1088/1742-6596/1559/1/012149.
25. Mueller O.M. Efficient Two-Level Cryogenic Power Distribution System. – AIP Conference Proceedings, 2002, DOI: 10. 1063/1.1472210.
26. Liu G., Li Y. Current Status and Key Issues of HVDC Transmission Research: A Brief Review. – 7th International Symposium on Mechatronics and Industrial Informatics, 2021, DOI: 10.1109/ISMII52409.2021.00011.
27. Kalair A. et al. Comparative Study of HVAC and HVDC Transmission Systems. – Renewable and Sustainable Energy Reviews, 2016, vol. 59, DOI: 10.1016/j.rser.2015.12.288.
28. Lin W. et al. LNG (Liquefied Natural Gas): A Necessary Part in China’s Future Energy Infrastructure. – Energy, 2010, vol. 35, No. 11, DOI: 10.1016/j.energy.2009.04.036.
29. Qiu Q., Xiao L. Review of Research Activities of Hybrid Superconducting Energy Pipeline in China. – Электричество, 2022, № 12, с. 4–12.
30. Kawaguchi S., Mizuno S., Oyama Y. Long-Term Cooling Strategy for the Primary Containment Vessel of the Kashiwazaki-Kariwa Nuclear Power Station in a Severe Accident. – 25th International Conference on Nuclear Engineering, 2017, DOI: 10.1115/ICONE25-67317.
31. Du X. et al. Multi-Time Scale Lifetime Evaluation of the Device in the Renewable Energy System. – Thermal Reliability of Power Semiconductor Device in the Renewable Energy System. CPSS Power Electronics Series. Singapore: Springer Nature, 2022, pp. 107–136, DOI: 10.1007/978-981-19-3132-1_5.
32. Modestov K.A. et al. Problem of Cryogenic Cooling of Semiconductor Switches for Power Convertors. – Amazonia Investiga, 2019, vol. 8, No. 24.
33. Rodriguez J. et al. Direct Detection of Anchor Damping in Mems Tuning Fork Resonators. – Journal of Microelectromechanical Systems, 2018, vol. 27, No. 5, DOI: 10.1109/JMEMS.2018.2859958.
34. Hahn T.A. Thermal Expansion of Copper from 20 to 800 K – Standard Reference Material 736. – Journal of Applied Physics, 1970, vol. 41, No. 13, DOI: 10.1063/1.1658614.
35. Chen R. et al. Overcurrent and Short-Circuit Capability Experimental Investigation for GaN HEMT at Cryogenic Temperature. – IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, DOI: 10.1109/APEC42165.2021.9487188.
36. Wei Y. et al. Overcurrent Test for GaN HEMT with Cryogenic Cooling. – IEEE Transportation Electrification Conference and Expo, Asia-Pacific, 2022, DOI: 10.1109/ITECAsia-Pacific56316.2022.9942147.
37. Gui H. et al. Review of Power Electronics Components at Cryogenic Temperatures. – IEEE Transactions on Power Electronics, 2020, vol. 35, No. 5, DOI: 10.1109/TPEL.2019.2944781.
38. Elwakeel A. et al. Study of Power Devices for Use in Phase-Leg at Cryogenic Temperature. – IEEE Transactions on Applied Superconductivity, 2021, vol. 31, No. 5, DOI: 10.1109/TASC.2021.3064544.
39. Chowdhury S. et al. Comparative Evaluation of Commercial 1200 V SiC Power MOSFETs Using Diagnostic I-V Characterization at Cryogenic Temperatures. – European Conference on Silicon Carbide & Related Materials, 2016, DOI: 10.4028/www.scientific.net/MSF.897.545.
40. Barth C.B. et al. Design, Operation, and Loss Characterization of a 1 kW GaN-Based 3-Level Converter at Cryogenic Temperatures. – IEEE Transactions on Power Electronics, 2020, vol. 35, No. 11, DOI: 10.1109/TPEL.2020.2989310.
41. Park C. et al. Cryogenic Power Electronics: Press-Pack IGBT Modules. – IOP Conference Series: Materials Science and Engineering, 2020, vol. 756, No. 1, DOI: 10.1088/1757-899X/756/1/012009.
42. Wadsworth A. et al. GaN-Based Cryogenic Temperature Power Electronics for Superconducting Motors in Cryo-Electric Aircraft. – Superconductor Science and Technology, 2023, vol. 36, No. 9, DOI: 10.1088/1361-6668/ace5e7.
43. Qi J. et al. Comprehensive Assessment of Avalanche Operating Boundary of SiC Planar/Trench MOSFET in Cryogenic Applications. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 6, DOI: 10.1109/TPEL.2020.3034902.
44. Ren R. et al. Characterization of 650 V Enhancement-Mode GaN HEMT at Cryogenic Temperatures. – IEEE Energy Conversion Congress and Exposition, 2018, DOI: 10.1109/ECCE.2018.8557868.
45. Ostapchuk M.A. et al. Evaluation of the Self-Heating Effect in the Static Characterization of Cryo-Cooled Power Diodes. – IEEE 24th International Conference of Young Professionals in Electron Devices and Materials, 2023, DOI: 10.1109/EDM58354.2023.10225131.
46. Wei Y. et al. Power Relay Based Multiple Device Cryogenic Characterization Method and Results. – IEEE Open Journal of Industry Applications, 2022, vol. 3, DOI: 10.1109/OJIA.2022.3195278.
47. Dvornikov O.V. et al. Software and Hardware Complex for Studying Semiconductor Devices at Low, Incl. Cryogenic, Temperatures. – 2nd International Ural Conference on Measurements, 2017, DOI: 10.1109/URALCON.2017.8120719.
48. Ghosh A. et al. A Cost-Effective, Compact, Automatic Testing System for Dynamic Characterization of Power Semiconductor Devices. – IEEE Energy Conversion Congress and Exposition (ECCE), 2019, DOI: 10.1109/ECCE.2019.8912307.
---
Исследование выполнено за счет гранта Российского научного фонда № 23-19-00624, https://rscf.ru/project/23-19-00624/
#
1. Collaudin B., Rando N. Cryogenics in Space: A Review of the Missions and of the Technologies. – Cryogenics, 2000, vol. 40, No. 12, pp. 797–819, DOI: 10.1016/S0011-2275(01)00035-2.
2. Hassan M.U. et al. Review of Power Electronics Converters and Associated Components/Systems at Cryogenic Temperatures. – International Journal of Powertrains, 2022, vol. 11, No. 2/3, DOI: 10. 1504/IJPT.2022.124745.
3. Jia C., Forsyth A.J. Evaluation of Semiconductor Losses in Cryogenic DC-DC Converters, CES/IEEE 5th International Power Electronics and Motion Control Conference, 2006, DOI: 10.1109/IPEMC.2006.4778204.
4. Gui H. et al. Characterization of 1. 2 kV SiC Power Mosfets at Cryogenic Temperatures, IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 7010–7015, DOI: 10.1109/ECCE.2018.8557442.
5. Chen H. et al. Cryogenic Characterization of Commercial SiC Power Mosfets. – Materials Science Forum. Grenoble, France: Trans Tech Publications Ltd., 2015, pp. 777–780, DOI: 10.4028/www.scientific.net/MSF.821-823.777.
6. Ostapchuk M. et al. Research of Static and Dynamic Properties of Power Semiconductor Diodes at Low and Cryogenic Temperatures. – Inventions, 2022, vol. 7, No. 4, DOI: 10.3390/inventions7040096.
7. Dotsenko V.V. et al. Integrated Cryogenic Electronics Testbed (Ice-t) for Evaluation of Superconductor and Cryo-Semiconductor Integrated Circuits. – IOP Conference Series: Materials Science and Engineering, 2017, vol. 171, DOI: 10.1088/1757-899X/171/1/012145.
8. Hossain M.M. et al. Cryogenic Characterization and Modeling of Silicon IGBT for Hybrid Aircraft Application. – IEEE Aerospace Conference, 2021, DOI: 10.1109/AERO50100.2021.9438422.
9. Bailey W. et al. A Cryogenic DC-DC Power Converter for a 100 kW Synchro, Nous Hts Generator at Liquid Nitrogen Temperatures. – Physics Procedia, 2012, vol. 36, DOI: 10.1016/j.phpro.2012.06.096.
10. Graber L. et al. Cryogenic Power Electronics at Megawatt-Scale Using a New Type of Press-Pack IGBT. – IOP Conference Series: Materials Science and Engineering, 2017, vol. 279, DOI: 10.1088/1757-899X/279/1/012011.
11. Elwakeel A. et al. Characterizing Semiconductor Devices for All-Electric Aircraft. – IEEE Access, 2023, vol. 11, DOI: 10.1109/ACCESS.2023.3279088.
12. Chen Y. et al. Experimental Investigations of State-of-the-Art 650 V Class Power MOSFETs for Cryogenic Power Conversion at 77 K. –IEEE Journal of the Electron Devices Society, 2018, vol. 6, DOI: 10.1109/JEDS.2017.2761451.
13. Ward R.R. et al. SiGe Semiconductor Devices for Cryogenic Power Electronics – IV. – 21st Annual IEEE Applied Power Electronics Conference and Exposition, 2006, DOI: 10.1109/APEC.2006.1620766.
14. Wei Y. et al. Dynamic Characterizations of 650 V, 900 V and 1200 V SiC MOSFETs under Low Temperatures. – IEEE Aerospace Conference (AERO), 2022, DOI: 10.1109/AERO53065.2022.9843464.
15. Büttner S., März M. Profitability of Low-Temperature Power Electronics and Potential Applications. – Cryogenics, 2022, vol. 121, DOI: 10.1016/j.cryogenics.2021.103392.
16. Cecere D. et al. A Review on Hydrogen Industrial Aerospace Applications. – International Journal of Hydrogen Energy, 2014, vol. 39, No. 20, DOI: 10.1016/j.ijhydene.2014.04.126.
17. Tsatsaronis G., Morosuk T. Advanced Exergetic Analysis of a Novel System for Generating Electricity and Vaporizing Liquefied Natural Gas. – Energy, 2010, vol. 35(2), pp. 820–829, DOI: 10.1016/j.energy.2009.08.019.
18. Alekseev А.О. et al. Elektrichestvo – in Russ. (Electricity), 2024, No. 1, pp. 10–17.
19. Tatuyko P.S. et al. Elektrotekhnika – in Russ. (Electrical Engineering), 2021, No. 9, pp. 47–51.
20. Weng F. et al. Transient Test and AC Loss Study of a Cryogenic Propulsion Unit for All Electric Aircraft. – IEEE Access, 2021, vol. 9, DOI: 10.1109/ACCESS.2021.3073071.
21. Hassan M. et al. Design and Validation of a 20 kVA, Fully Cryogenic, Two-Level Gan-Based Current Source Inverter for Full Electric Aircrafts. – IEEE Transactions on Transportation Electrification, 2022, vol. 8, No. 4, DOI: 10.1109/TTE.2022.3176842.
22. Li H. et al. A Power-Electronics Free Protection Device for Superconducting Electrical Propulsion Aircraft. – IEEE Transactions on Transportation Electrification, 2022, vol. 8, No. 4, DOI: 10.1109/TTE.2022.3175895.
23. Curcic T., Wolf S.A. Superconducting Hybrid Power Electronics for Military Systems. – IEEE Transactions on Applied Superconductivity, 2005, vol. 15, No. 2, DOI: 10.1109/TASC.2005. 849667.
24. Kovalev K.L. et al. Principal Analysis of Hybrid Power Systems with HTS Electrical Machines. – Journal of Physics: Conference Series, 2020, vol. 1559, No. 1, DOI: 10.1088/1742-6596/1559/1/012149.
25. Mueller O.M. Efficient Two-Level Cryogenic Power Distribution System. – AIP Conference Proceedings, 2002, DOI: 10. 1063/1.1472210.
26. Liu G., Li Y. Current Status and Key Issues of HVDC Transmission Research: A Brief Review. – 7th International Symposium on Mechatronics and Industrial Informatics, 2021, DOI: 10.1109/ISMII52409.2021.00011.
27. Kalair A. et al. Comparative Study of HVAC and HVDC Transmission Systems. – Renewable and Sustainable Energy Reviews, 2016, vol. 59, DOI: 10.1016/j.rser.2015.12.288.
28. Lin W. et al. LNG (Liquefied Natural Gas): A Necessary Part in China’s Future Energy Infrastructure. – Energy, 2010, vol. 35, No. 11, DOI: 10.1016/j.energy.2009.04.036.
29. Qiu Q., Xiao L. Elektrichestvo – in Russ. (Electricity), 2022, No. 12, pp. 4–12.
30. Kawaguchi S., Mizuno S., Oyama Y. Long-Term Cooling Strategy for the Primary Containment Vessel of the Kashiwazaki-Kariwa Nuclear Power Station in a Severe Accident. – 25th Inter-national Conference on Nuclear Engineering, 2017, DOI: 10.1115/ICONE25-67317.
31. Du X. et al. Multi-Time Scale Lifetime Evaluation of the Device in the Renewable Energy System. – Thermal Reliability of Power Semiconductor Device in the Renewable Energy System. CPSS Power Electronics Series. Singapore: Springer Nature, 2022, pp. 107–136, DOI: 10.1007/978-981-19-3132-1_5.
32. Modestov K.A. et al. Problem of Cryogenic Cooling of Semiconductor Switches for Power Convertors. – Amazonia Investiga, 2019, vol. 8, No. 24.
33. Rodriguez J. et al. Direct Detection of Anchor Damping in Mems Tuning Fork Resonators. – Journal of Microelectromechanical Systems, 2018, vol. 27, No. 5, DOI: 10.1109/JMEMS.2018.2859958.
34. Hahn T.A. Thermal Expansion of Copper from 20 to 800 K – Standard Reference Material 736. – Journal of Applied Physics, 1970, vol. 41, No. 13, DOI: 10.1063/1.1658614.
35. Chen R. et al. Overcurrent and Short-Circuit Capability Experimental Investigation for GaN HEMT at Cryogenic Temperature. – IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, DOI: 10.1109/APEC42165.2021.9487188.
36. Wei Y. et al. Overcurrent Test for GaN HEMT with Cryogenic Cooling. – IEEE Transportation Electrification Conference and Expo, Asia-Pacific, 2022, DOI: 10.1109/ITECAsia-Pacific56316.2022.9942147.
37. Gui H. et al. Review of Power Electronics Components at Cryogenic Temperatures. – IEEE Transactions on Power Electronics, 2020, vol. 35, No. 5, DOI: 10.1109/TPEL.2019.2944781.
38. Elwakeel A. et al. Study of Power Devices for Use in Phase-Leg at Cryogenic Temperature. – IEEE Transactions on Applied Superconductivity, 2021, vol. 31, No. 5, DOI: 10.1109/TASC.2021.3064544.
39. Chowdhury S. et al. Comparative Evaluation of Commercial 1200 V SiC Power MOSFETs Using Diagnostic I-V Characterization at Cryogenic Temperatures. – European Conference on Silicon Carbide & Related Materials, 2016, DOI: 10.4028/www.scientific.net/MSF.897.545.
40. Barth C.B. et al. Design, Operation, and Loss Characterization of a 1 kW GaN-Based 3-Level Converter at Cryogenic Temperatures. – IEEE Transactions on Power Electronics, 2020, vol. 35, No. 11, DOI: 10.1109/TPEL.2020.2989310.
41. Park C. et al. Cryogenic Power Electronics: Press-Pack IGBT Modules. – IOP Conference Series: Materials Science and Engineering, 2020, vol. 756, No. 1, DOI: 10.1088/1757-899X/756/1/012009.
42. Wadsworth A. et al. GaN-Based Cryogenic Temperature Power Electronics for Superconducting Motors in Cryo-Electric Aircraft. – Superconductor Science and Technology, 2023, vol. 36, No. 9, DOI: 10.1088/1361-6668/ace5e7.
43. Qi J. et al. Comprehensive Assessment of Avalanche Operating Boundary of SiC Planar/Trench MOSFET in Cryogenic Applications. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 6, DOI: 10.1109/TPEL.2020.3034902.
44. Ren R. et al. Characterization of 650 V Enhancement-Mode GaN HEMT at Cryogenic Temperatures. – IEEE Energy Conversion Congress and Exposition, 2018, DOI: 10.1109/ECCE.2018.8557868.
45. Ostapchuk M.A. et al. Evaluation of the Self-Heating Effect in the Static Characterization of Cryo-Cooled Power Diodes. – IEEE 24th International Conference of Young Professionals in Electron Devices and Materials, 2023, DOI: 10.1109/EDM58354.2023.10225131.
46. Wei Y. et al. Power Relay Based Multiple Device Cryogenic Characterization Method and Results. – IEEE Open Journal of Industry Applications, 2022, vol. 3, DOI: 10.1109/OJIA.2022.3195278.
47. Dvornikov O.V. et al. Software and Hardware Complex for Studying Semiconductor Devices at Low, Incl. Cryogenic, Temperatures. – 2nd International Ural Conference on Measurements, 2017, DOI: 10.1109/URALCON.2017.8120719.
48. Ghosh A. et al. A Cost-Effective, Compact, Automatic Testing System for Dynamic Characterization of Power Semiconductor Devices. – IEEE Energy Conversion Congress and Exposition (ECCE), 2019, DOI: 10.1109/ECCE.2019.8912307
---
The research was financially supported by the Russian Science Foundation, grant No. 23-19-00624, https://rscf.ru/project/23-19-00624/