Дуговой реактор переменного тока для синтеза карбидов

  • Александр Яковлевич Пак
  • Максим Юрьевич Сперанский
  • Антон Анатольевич Лавренчук
  • Юлия Захаровна Васильева
  • Юлия Александровна Некля
Ключевые слова: дуговой реактор, переменный ток, дуговой разряд, карбиды

Аннотация

В статье представлены результаты экспериментальных исследований конструкции атмосферного дугового реактора переменного тока для синтеза бескислородной керамики. Впервые разработанная конструкция дугового реактора и модернизируемая методика безвакуумного электродугового синтеза позволяют реализовать синтез неоксидной керамики в условиях горения дугового разряда переменного тока в открытой воздушной среде. Экспериментально доказано формирование автономной газовой среды на основе газов монооксида и диоксида углерода, которая препятствует окислению продуктов синтеза в ходе термического воздействия дуги переменного тока на шихту. Определены рабочие параметры дугового реактора с позиции синтеза карбидов металлов и неметаллов. В отличие от существующих безвакуумных дуговых реакторов постоянного тока созданный реактор характеризуется сниженным расходом электродов, более простой конструкцией силового разрядного контура и меньшей стоимостью. Апробация созданного дугового реактора и безвакуумной методики продемонстрирована на примере синтеза кристаллической фазы карбида кремния при воздействии дугового разряда переменного тока на смесь порошков кремния и углерода в открытой воздушной среде.

Биографии авторов

Александр Яковлевич Пак

доктор техн. наук, заведующий лабораторией перспективных материалов энергетической отрасли, Национальный исследовательский Томский политехнический университет, Томск, Россия; ayapak@tpu.ru.

Максим Юрьевич Сперанский

аспирант, Национальный исследовательский Томский политехнический университет, Томск, Россия; speranskiy@tpu.ru.

Антон Анатольевич Лавренчук

аспирант, Национальный исследовательский Томский политехнический университет, Томск, Россия; lavrenchuk@tpu.ru.

Юлия Захаровна Васильева

кандидат техн. наук, научный сотрудник лаборатории перспективных материалов энергетической отрасли, Национальный исследовательский Томский политехнический университет, Томск, Россия; yzv1@tpu.ru.

Юлия Александровна Некля

студент, техник лаборатории перспективных материалов энергетической отрасли, Национальный исследовательский Томский политехнический университет, Томск, Россия; yan26@tpu.ru.

Литература

1. Reed T.B. Arc Techniques Materials Research. – Materials Research Bulletin, 1967, vol. 2, pp. 349–367, DOI:10.1016/0025-5408(67)90018-9.
2. William A.F. Metal Carbides. – Ames Laboratory, Iowa State University of Science and Technology, 1963, pp. 153–247.
3. Adachi G.Y., Imanaka N., Fuzhong Zh. Rare Earth Carbides: Handbook on the Physics and Chemistry of Rare Earths. Amsterdam: Elsevier Science B.V, 1991, vol. 15, pp. 61–189.
4. Anders A. Unfiltered and Filtered Cathodic Arc. – Handbook of Deposition Technologies for Films and Coatings, 2010, vol. 10, pp. 466–531, DOI:10.1016/B978-0-8155-2031-3.00010-7.
5. Погребняк А.Д., Тюрин Ю.Н. Модификация свойств материалов и осаждение покрытий с помощью плазменных струй. – Успехи физических наук, 2005, т. 175, № 5, с. 515–544.
6. Михайлов Б.И. Электродуговые плазмохимические реакторы раздельного, совмещенного и раздельно-совмещенного типов. – Теплофизика и аэромеханика, 2010, т. 17, № 3, с. 425–440.
7. Цветков Ю.В., Самохин А.В. Плазменная нанопорошковая металлургия. – Автоматическая сварка, 2008, № 11, с. 171–175.
8. Ремпель А.А. Нанотехнологии свойства и применение наноструктурированных материалов. – Успехи химии, 2007, т. 76, с. 474–500.
9. Мубояджян С.А. Эрозионностойкие покрытия из нитридов и карбидов металлов и их плазмохимический синтез. – Российский химический журнал, 2010, т. 54, № 1, с. 103–109.
10. Ивановский А.Л. Нитриды и карбиды металлов платиновой группы: синтез, свойства и моделирование. – Успехи химии, 2009, т. 78, № 4, с. 328–344.
11. Подгорный В.И. и др. Получение образцов карбидов в плазме дугового разряда. – Журнал технической физики, 2013, т. 83, № 7, с. 77–81.
12. Бурханов Г.С. и др. Синтез монокристаллов карбида и карбонитрида ниобия плазменно-дуговым методом. – Перспективные материалы, 2011, № 11, с. 120–124.
13. Аньшаков А.С. и др. Синтез нанопорошков карбида кремния в двухструйном плазмохимическом реакторе. – Теплофизика и аэромеханика, 2017, т. 24, № 3, с. 473.
14. Hei L.F. et al. Fabrication and Characterizations of Large Homoepitaxial Single Crystal Diamond Grown by DC Arc Plasma Jet CVD. – Diamond and Related Materials, 2012, vol. 30, pp. 77–84, DOI:10.1016/j.diamond.2012.10.002.
15. Lindfors P.A., Mularie W.M. Cathodic Arc Deposition Technology. – Surface and Coatings Technology, 1986, vol. 29, pp. 275–290, DOI:10.1016/0257-8972(86)90001-0.
16. Mandilas Ch. et al. Synthesis of Aluminium Nanoparticles by Arc Plasma Spray under Atmospheric Pressure. – Materials Science and Engineering B, 2013, vol. 178(1), pp. 22–30, DOI:10.1016/j.mseb.2012.10.004.
17. Choi S.I. et al. High Purity Synthesis of Carbon Nanotubes by Methane Decomposition Using an Arc-Jet Plasma. – Current Applied Physics, 2006, vol. 6(2), pp. 224–229, DOI:10.1016/j.cap.2005.07.045.
18. Tay B.K., Zhao Z.W., Chua D.H.C. Review of Metal Oxide Films Deposited by Filtered Cathodic Vacuum Arc Technique. – Materials Science and Engineering R: Reports, 2006, vol. 52(1-3), DOI:10.1016/j.mser.2006.04.003.
19. Lu F.X. et al. A New Type of DC Arc Plasma Torch for Low Cost Large Area Diamond Deposition. – Diamond and Related Materials, 1998, vol. 7, pp. 737–741, DOI:10.1016/S0925-9635(97)00180-5.
20. Su Y., Zhang Y. Carbon Nanomaterials Synthesized by Arc Discharge Hot Plasma. – Carbon, 2015, vol. 83, pp. 90–99, DOI:10.1016/j.carbon.2014.11.023.
21. Xing G., Jia S.-l., Shi Z.-q. The Production of Carbon Nano-Materials by Arc Discharge under Water or Liquid Nitrogen. – New Carbon Materials, 2007, vol. 22(4), pp. 337–341, DOI:10.1016/S1872-5805(08)60005-0.
22. Kim T.H., Seon H., Park D.W. Synthesis of CeO2 Nano-crystalline Powders Using DC Non-Transferred Thermal Plasma at Atmospheric Pressure. – Advanced Powder Technology, 2016, vol. 27(5), pp. 2012–2018, DOI:10.1016/j.apt.2016.07.008.
23. Arora N., Sharma N.N. Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review. – Diamond and Related Materials, 2014, vol. 50, pp. 135–150, DOI:10.1016/j.diamond.2014.10.001.
24. Zhao J. et al. Arc Synthesis of Double-Walled Carbon Nanotubes in Low Pressure Air and Their Superior Field Emission Properties. – Carbon, 2013, vol. 58, pp. 92–98.
25. Su Y. et al. Low-Cost Synthesis of Single-Walled Carbon Nanotubes by Low-Pressure Air Arc Discharge. – Materials Research Bulletin, 2014, vol. 50, pp. 23–25, DOI:10.1016/j.materresbull.2013.10.013.
26. Li N. et al. Synthesis of Single-Wall Carbon Nanohorns by Arc-Discharge in Air and Their Formation Mechanism. – Carbon, 2010, vol. 48(5), pp. 1580–1585, DOI:10.1016/j.carbon.2009.12.055.
27. Pak A.Y. et al. Machine Learning-Driven Synthesis of TiZrNbHfTaC5 High-Entropy Carbide. – npj Computational Materials, 2023, vol. 9(1), DOI:10.1038/s41524-022-00955-9.
28. Zhao J. et al. Continuous and Low-Cost Synthesis of High-Quality Multi-Walled Carbon Nanotubes by Arc Discharge in Air. – Physica E: Low-Dimensional Systems and Nanostructures, 2012, vol. 44(7-8), pp. 1639–1643, DOI:10.1016/j.physe.2012.04.010.
29. Тот Л. Карбиды и нитриды переходных металлов. М.: Мир, 1974, 294 с.
30. Churilov G.N. et al. Synthesis of Fullerenes in a High-Frequency Arc Plasma under Elevated Helium Pressure. – Carbon, 2013, vol. 62(23), pp. 389–392, DOI:10.1016/j.carbon.2013.06.022.
31. Levchenko I. et al. The Large-Scale Production of Graphene Flakes Using Magnetically-Enhanced Arc Discharge between Carbon Electrodes. – Carbon, 2010, vol. 48(15), pp. 4570–4574, DOI:10.1016/j.carbon.2010.07.055.
32. Schur D.V. et al. Production of Carbon Nanostructures by Arc Synthesis in the Liquid Phase. – Carbon, 2007, vol. 45(6), pp. 1322–1329, DOI:10.1016/j.carbon.2007.01.017.
33. Yeh Y.W., Raitses Y., Yao N. Structural Variations of the Cathode Deposit in the Carbon Arc. – Carbon, 2016, vol. 105, pp. 490–495, DOI:10.1016/j.carbon.2016.04.074.
34. Corbella C. et al. Tracking Nanoparticle Growth in Pulsed Carbon Arc Discharge. – Journal of Applied Physics, 2020, vol. 127(24), DOI:10.1063/5.0011283.
35. Ng J., Raitses Y. Self-Organisation Processes in the Carbon Arc for Nanosynthesis. – Journal of Applied Physics, 2015, vol. 117(6), DOI:10.1063/1.4906784.
36. Pak A. et al. Cubic SiC Nanowire Synthesis by DC Arc Discharge under Ambient Air Conditions. – Surface and Coatings Technology, 2020, vol. 387, DOI:10.1016/j.surfcoat.2020.125554.
37 Zhou J. et al. Simple Synthesis of Ultrafine Amorphous Silicon Carbide Nanoparticles by Atmospheric Plasmas. – Materials Letters, 2021, vol. 299, DOI:10.1016/j.matlet.2021.130072.
#
1. Reed T.B. Arc Techniques Materials Research. – Materials Research Bulletin, 1967, vol. 2, pp. 349–367, DOI:10.1016/0025-5408(67)90018-9.
2. William A.F. Metal Carbides. – Ames Laboratory, Iowa State University of Science and Technology, 1963, pp. 153–247.
3. Adachi G.Y., Imanaka N., Fuzhong Zh. Rare Earth Carbides: Handbook on the Physics and Chemistry of Rare Earths. Amsterdam: Elsevier Science B.V, 1991, vol. 15, pp. 61–189.
4. Anders A. Unfiltered and Filtered Cathodic Arc. – Handbook of Deposition Technologies for Films and Coatings, 2010, vol. 10, pp. 466–531, DOI:10.1016/B978-0-8155-2031-3.00010-7.
5. Pogrebnyak A.D., Tyurin Yu.N. Uspekhi fizicheskih nauk – in Russ. (Achievements of the Physical Sciences), 2005, vol. 175, No. 5, pp. 515–544.
6. Mihaylov B.I. Teplofizika i aeromekhanika – in Russ. (Thermophysics and Aeromechanics), 2010, vol. 17, No. 3, pp. 425–440.
7. Tsvetkov Yu.V., Samohin A.V. Avtomaticheskaya svarka – in Russ. (Automatic Welding), 2008, No. 11, pp. 171–175.
8. Rempel' А.А. Uspekhi himii – in Russ. (Advances in Chemistry), 2007, vol. 76, pp. 474–500.
9. Muboyadzhyan S.А. Rossiyskiy himicheskiy zhurnal – in Russ. (Russian Chemical Journal), 2010, vol. 54, No. 1, pp. 103–109.
10. Ivanovskiy A.L. Uspekhi himii – in Russ. (Advances in Chemistry), 2009, vol. 78, No. 4, pp. 328–344.
11. Podgornyy V.I. et al. Zhurnal tekhnicheskoy fiziki – in Russ. (Journal of Technical Physics), 2013, vol. 83, No. 7, pp. 77–81.
12. Burhanov G.S. et al. Perspektivnye materialy – in Russ. (Promising Materials), 2011, No. 11, pp. 120–124.
13. An'shakov A.S. et al. Teplofizika i aeromekhanika – in Russ. (Thermophysics and Aeromechanics), 2017, vol. 24, No. 3, pp. 473.
14. Hei L.F. et al. Fabrication and Characterizations of Large Homoepitaxial Single Crystal Diamond Grown by DC Arc Plasma Jet CVD. – Diamond and Related Materials, 2012, vol. 30, pp. 77–84, DOI:10.1016/j.diamond.2012.10.002.
15. Lindfors P.A., Mularie W.M. Cathodic Arc Deposition Technology. – Surface and Coatings Technology, 1986, vol. 29, pp. 275–290, DOI:10.1016/0257-8972(86)90001-0.
16. Mandilas Ch. et al. Synthesis of Aluminium Nanoparticles by Arc Plasma Spray under Atmospheric Pressure. – Materials Science and Engineering B, 2013, vol. 178(1), pp. 22–30, DOI:10.1016/j.mseb.2012.10.004.
17. Choi S.I. et al. High Purity Synthesis of Carbon Nanotubes by Methane Decomposition Using an Arc-Jet Plasma. – Current Applied Physics, 2006, vol. 6(2), pp. 224–229, DOI:10.1016/j.cap.2005.07.045.
18. Tay B.K., Zhao Z.W., Chua D.H.C. Review of Metal Oxide Films Deposited by Filtered Cathodic Vacuum Arc Technique. – Materials Science and Engineering R: Reports, 2006, vol. 52(1-3), DOI:10.1016/j.mser.2006.04.003.
19. Lu F.X. et al. A New Type of DC Arc Plasma Torch for Low Cost Large Area Diamond Deposition. – Diamond and Related Materials, 1998, vol. 7, pp. 737–741, DOI:10.1016/S0925-9635(97)00180-5.
20. Su Y., Zhang Y. Carbon Nanomaterials Synthesized by Arc Discharge Hot Plasma. – Carbon, 2015, vol. 83, pp. 90–99, DOI:10.1016/j.carbon.2014.11.023.
21. Xing G., Jia S.-l., Shi Z.-q. The Production of Carbon Nano-Materials by Arc Discharge under Water or Liquid Nitrogen. – New Carbon Materials, 2007, vol. 22(4), pp. 337–341, DOI:10.1016/S1872-5805(08)60005-0.
22. Kim T.H., Seon H., Park D.W. Synthesis of CeO2 Nanocrys-talline Powders Using DC Non-Transferred Thermal Plasma at Atmospheric Pressure. – Advanced Powder Technology, 2016, vol. 27(5), pp. 2012–2018, DOI:10.1016/j.apt.2016.07.008.
23. Arora N., Sharma N.N. Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review. – Diamond and Related Materials, 2014, vol. 50, pp. 135–150, DOI:10.1016/j.diamond.2014.10.001.
24. Zhao J. et al. Arc Synthesis of Double-Walled Carbon Nanotubes in Low Pressure Air and Their Superior Field Emission Properties. – Carbon, 2013, vol. 58, pp. 92–98.
25. Su Y. et al. Low-Cost Synthesis of Single-Walled Carbon Nanotubes by Low-Pressure Air Arc Discharge. – Materials Research Bulletin, 2014, vol. 50, pp. 23–25, DOI:10.1016/j.mater-resbull.2013.10.013.
26. Li N. et al. Synthesis of Single-Wall Carbon Nanohorns by Arc-Discharge in Air and Their Formation Mechanism. – Carbon, 2010, vol. 48(5), pp. 1580–1585, DOI:10.1016/j.carbon.2009.12.055.
27. Pak A.Y. et al. Machine Learning-Driven Synthesis of TiZrNbHfTaC5 High-Entropy Carbide. – npj Computational Materials, 2023, vol. 9(1), DOI:10.1038/s41524-022-00955-9.
28. Zhao J. et al. Continuous and Low-Cost Synthesis of High-Quality Multi-Walled Carbon Nanotubes by Arc Discharge in Air. – Physica E: Low-Dimensional Systems and Nanostructures, 2012, vol. 44(7-8), pp. 1639–1643, DOI:10.1016/j.physe.2012.04.010.
29. Tot L. Karbidy i nitridy perekhodnyh metallov (Carbides and Nitrides of Transition Metals). М.: Mir, 1974, 294 p.
30. Churilov G.N. et al. Synthesis of Fullerenes in a High-Frequency Arc Plasma under Elevated Helium Pressure. – Car-bon, 2013, vol. 62(23), pp. 389–392, DOI:10.1016/j.carbon.2013.06.022.
31. Levchenko I. et al. The Large-Scale Production of Graphene Flakes Using Magnetically-Enhanced Arc Discharge between Carbon Electrodes. – Carbon, 2010, vol. 48(15), pp. 4570–4574, DOI:10.1016/j.carbon.2010.07.055.
32. Schur D.V. et al. Production of Carbon Nanostructures by Arc Synthesis in the Liquid Phase. – Carbon, 2007, vol. 45(6), pp. 1322–1329, DOI:10.1016/j.carbon.2007.01.017.
33. Yeh Y.W., Raitses Y., Yao N. Structural Variations of the Cathode Deposit in the Carbon Arc. – Carbon, 2016, vol. 105, pp. 490–495, DOI:10.1016/j.carbon.2016.04.074.
34. Corbella C. et al. Tracking Nanoparticle Growth in Pulsed Carbon Arc Discharge. – Journal of Applied Physics, 2020, vol. 127(24), DOI:10.1063/5.0011283.
35. Ng J., Raitses Y. Self-Organisation Processes in the Carbon Arc for Nanosynthesis. – Journal of Applied Physics, 2015, vol. 117(6), DOI:10.1063/1.4906784.
36. Pak A. et al. Cubic SiC Nanowire Synthesis by DC Arc Discharge under Ambient Air Conditions. – Surface and Coatings Technology, 2020, vol. 387, DOI:10.1016/j.surfcoat.2020.125554.
37. Zhou J. et al. Simple Synthesis of Ultrafine Amorphous Silicon Carbide Nanoparticles by Atmospheric Plasmas. – Materials Letters, 2021, vol. 299, DOI:10.1016/j.matlet.2021.130072
---
The research was carried out with the financial support of the Russian Science Foundation project
No. 23-79-01145, https://rscf.ru/project/23-79-01145
Опубликован
2024-01-25
Раздел
Статьи