Оценка перенапряжения, наводимого на линии электропередачи сильноточной внутриоблачной молнией
Аннотация
В статье представлена оценка перенапряжения, наводимого на линии электропередачи сильноточной внутриоблачной молнией. Интенсивные импульсы тока с амплитудой до десятков (в редких случаях сотен) килоампер и длительностью порядка 10 мкс могут быть связаны либо с компактными внутриоблачными разрядами, либо с начальными импульсами пробоя. Поскольку создаваемые ими напряженности электрического поля излучения сопоставимы с таковыми для возвратных ударов, они могут представлять опасность для низковольтных кабелей связи и линий электропередачи. Представленная численная модель рассматривает в качестве источника тока гармонический диполь и использует метод многозвенной схемы замещения для расчета наводимого перенапряжения при различной частоте сигнала и пространственных ориентациях передающих линий. Рассмотрены случаи высоковольтных и низковольтных линий электропередачи длиной 10 км и экрана коаксиального кабеля длиной 100 м. Установлено, что в большинстве случаев максимальные значения наводимой разности потенциалов между передающей линией и землей не превышают 1 кВ. Однако существуют определенные частоты и ориентации линий, при которых индуцированное перенапряжение может быть сопоставимо с номинальным напряжением большинства линий электропередачи и, следовательно, может привести к их отключению. Обсуждаются перспективы развития модели и предлагаются возможные рекомендации по защите от перенапряжений, вызванных сильноточной внутриоблачной молнией.
Литература
2. Romps D.M. et al. Projected Increase in Lightning Strikes in the United States due to Global Warming. – Science, 2014, vol. 346, pp. 851–854, DOI:10.1126/science.1259100.
3. Yuan T. et al. Observational Evidence of Aerosol Enhancement of Lightning Activity and Convective Invigoration. – Geophysical Research Letters, 2011, vol. 38, p. L04701, DOI:10.1029/2010GL046052.
4. Le Vine D.M. Sources of the Strongest RF Radiation from Lightning. – Journal of Geophysical Research, 1980, vol. 85, pp. 4091–4095, DOI: 10.1029/JC085iC07p04091s.
5. Rakov V.A. et al. New Insights into the Lightning Discharge Processes. – Plasma Sources Science and Technology, 2022, vol. 31, DOI:10.1088/1361-6595/ac9330.
6. Zhang H. et al. Locating Narrow Bipolar Events with Single-Station Measurement of Low-Frequency Magnetic Fields. – Journal of Atmospheric and Solar-Terrestrial Physics, 2016, vol. 143-144, pp. 88–101, DOI:10.1016/j.jastp.2016.03.009.
7. Leal A.F.R., Rakov V.A. A Study of the Context in Which Compact Intracloud Discharges Occur. – Scientific Reports, 2019, vol. 9, DOI:10.1038/s41598-019-48680-6.
8. Chen S. et al. Clusters of Compact Intracloud Discharges (CIDs) in Overshooting Convective Surges. – Journal of Geophysical Research: Atmospheres, 2024, vol. 129, DOI:10.1029/2023JD040307.
9. Smith D.A. et al. A Distinct Class of Isolated Intracloud Lightning Discharges and Their Associated Radio Emissions. – Journal of Geophysical Research, 1999, vol. 104(D4), pp. 4189–4212, DOI:10.1029/1998JD200045.
10. Сысоев А.М. и др. Численное моделирование сильноточных атмосферных разрядов с учетом термодинамики плазменных каналов. Ч. 2. Анализ результатов моделирования. – Глобальная энергия, 2024, vol. 30(1), pp. 117–135.
11. Nag A., Rakov V.A. Electromagnetic Pulses Produced by Bouncing-Wave-Type Lightning Discharges. – IEEE Transactions on Electromagnetic Compatibility, 2009, vol. 51(3), pp. 466–470, DOI: 10.1029/2010JD014235.
12. Nag A., Rakov V.A. Compact Intracloud Lightning Discharges: 1. Mechanism of Electromagnetic Radiation and Modeling. – Journal of Geophysical Research, 2010, vol. 115, DOI:10.1029/2010JD014235.
13. Da Silva C.L., Pasko V.P. Physical Mechanism of Initial Breakdown Pulses and Narrow Bipolar Events in Lightning Discharges. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120, pp. 4989–5009, DOI:10.1002/2015JD023209.
14. Cooray V. et al. Modeling Compact Intracloud Discharge (CID) as a Streamer Burst. – Atmosphere, 2020, 11(5), DOI:10.3390/atmos11050549.
15. Smith E.M. et al. Initial Breakdown Pulse Parameters in Intracloud and Cloud-to-Ground Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2018, vol. 123, pp. 2129–2140, DOI:10.1002/2017JD027729.
16. Karunarathna N. et al. Initiation Locations of Lightning Flashes Relative to Radar Reflectivity in Four Small Florida Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2017, 122(12), pp. 6565–6591, DOI:10.1002/2017JD026566.
17. Nag A., DeCarlo B.A., Rakov V.A. Analysis of Microsecond- and Submicrosecond-Scale Electric Field Pulses Produced by Cloud and Ground Lightning Discharges. – Atmospheric Research, 2009, vol. 91(2-4), pp. 316–325, DOI:10.1016/j.atmosres.2008.01.014.
18. Baharudin Z.A. et al. Electric Field Changes Generated by the Preliminary Breakdown for the Negative Cloud-to-Ground Lightning Flashes in Malaysia and Sweden. – Journal of Atmospheric and Solar-Terrestrial Physics, 2012, vol. 84-85, pp. 15–24, DOI:10.1016/j.jastp.2012.04.009.
19. Campos L.Z.S., Saba M.M.F. Visible Channel Development During the Initial Breakdown of a Natural Negative Cloud-to-Ground Flash. – Geophysical Research Letters, 2013, vol. 40, pp. 4756–4761, DOI:10.1002/grl.50904.
20. Stolzenburg M. et al. Leader Observations During the Initial Breakdown Stage of a Lightning Flash. – Journal of Geophysical Research: Atmospheres, 2014, vol. 119, pp. 12,198–12,221, DOI:10.1002/2014JD021994.
21. Marshall T. et al. On the Percentage of Lightning Flashes That Begin with Initial Breakdown Pulses. – Journal of Geo-physical Research: Atmospheres, 2014, vol. 119, pp. 445–460, DOI:10.1002/ 2013JD020854.
22. Lyu F., Cummer S.A., McTague L. Insights into High Peak Current In-Cloud Lightning Events During Thunderstorms. – Geophysical Research Letters, 2015, vol. 42, pp. 6836–6843, DOI:10. 1002/2015GL065047.
23. Chapman R.T. et al. Initial Electric Field Changes of Lightning Flashes in Two Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122, pp. 3718–3732, DOI:10.1002/ 2016JD025859.
24. Kolmašová I. et al. Lightning initiation: Strong Pulses of VHF Radiation Accompany Preliminary Breakdown. – Scientific Reports, 2018, vol. 8, p. 3650, DOI:10.1038/s41598-018-21972-z.
25. Karunarathne N. et al. Studying Sequences of Initial Breakdown Pulses in Cloud-to-Ground Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2020, vol. 125, DOI:10.1029/ 2019JD032104.
26. Wu T. et al. Preliminary Breakdown of Intracloud Lightning: Initiation Altitude, Propagation Speed, Pulse Train Characteristics, and Step Length Estimation. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120, pp. 9071–9086, DOI:10.1002/2015JD023546.
27. Qi Q. et al. High-Speed Video Observations of the Fine Structure of a Natural Negative Stepped Leader at Close Distance. – Atmospheric Research, 2016, vol. 178-179, pp. 260–267, DOI:10.1016/j.atmosres.2016.03.027.
28. Nag A., Rakov V.A. A Unified Engineering Model of the First Stroke in Downward Negative Lightning. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121, pp. 2188–2204, DOI:10.1002/2015JD023777.
29. Vance E.F. Coupling to Shielded Cables. New York: Wiley, 1978, 183 p.
30 Delfino F. et al. Lightning Electromagnetic Field Calculations in the Presence of a Conducting Ground: the Numerical Treatment of Sommerfeld’s Integrals. – Lightning Electromagnetics. Vol. 2: Electrical Processes and Effects, 2022, pp. 201–241, DOI:10.1049/PBPO127G_ch6.
31. Nucci C.A., Rachidi F., Rubinstein M. Interaction of Lightning-Generated Electromagnetic Fields with Overhead and Underground Cables. – in Book: Lightning Electromagnetics. Vol. 2: Electrical Processes and Effects, 2022, pp. 291–324, DOI:10.1049/PBPO127G_ch8.
32. Ткаченко С.В., Нич Ю., Коровкин Н.В. Влияние высокочастотных электромагнитных полей на провода большого сечения. – Электричество, 2018, № 7, с. 4–18.
33. Гринберг Г.А., Бонштедт Б.Э. Основы точной теории волнового поля линий передачи. – Журнал технической физики, 1954, т. 24(1), с. 67–95.
34. Иудин Д.И. и др. Разряд молнии как самоорганизующаяся транспортная сеть. Ч.1. Концепция асимметричного разрядного древа. – Электричество, 2023, № 6, с. 77–88.
35. Иудин Д.И. и др. Разряд молнии как самоорганизующаяся транспортная сеть. Ч.2. Точка реверса и транзиенты молнии. – Электричество, 2023, № 7, с. 66–76.
36. Кириллов В.Ю., Томилин M.M. Влияние электромагнитного резонанса в приборных модулях летательного аппарата на наведённые кондуктивные помехи. – Электричество, 2024, № 9, с. 17–22.
---
Работа выполнена при поддержке Российского научного фонда (проект № 23-21-00057)
#
1. Rakov V.A., Uman M.A. Lightning: Physics and Effects. New York: Cambridge University Press, 2003, 687 p.
2. Romps D.M. et al. Projected Increase in Lightning Strikes in the United States due to Global Warming. – Science, 2014, vol. 346, pp. 851–854, DOI:10.1126/science.1259100.
3. Yuan T. et al. Observational Evidence of Aerosol Enhancement of Lightning Activity and Convective Invigoration. – Geophysical Research Letters, 2011, vol. 38, p. L04701, DOI:10.1029/2010GL046052.
4. Le Vine D.M. Sources of the Strongest RF Radiation from Lightning. – Journal of Geophysical Research, 1980, vol. 85, pp. 4091–4095, DOI: 10.1029/JC085iC07p04091s.
5. Rakov V.A. et al. New Insights into the Lightning Discharge Processes. – Plasma Sources Science and Technology, 2022, vol. 31, DOI:10.1088/1361-6595/ac9330.
6. Zhang H. et al. Locating Narrow Bipolar Events with Single-Station Measurement of Low-Frequency Magnetic Fields. – Journal of Atmospheric and Solar-Terrestrial Physics, 2016, vol. 143-144, pp. 88–101, DOI:10.1016/j.jastp.2016.03.009.
7. Leal A.F.R., Rakov V.A. A Study of the Context in Which Compact Intracloud Discharges Occur. – Scientific Reports, 2019, vol. 9, DOI:10.1038/s41598-019-48680-6.
8. Chen S. et al. Clusters of Compact Intracloud Discharges (CIDs) in Overshooting Convective Surges. – Journal of Geophysical Research: Atmospheres, 2024, vol. 129, DOI:10.1029/2023JD040307.
9. Smith D.A. et al. A Distinct Class of Isolated Intracloud Lightning Discharges and Their Associated Radio Emissions. – Journal of Geophysical Research, 1999, vol. 104(D4), pp. 4189–4212, DOI:10.1029/1998JD200045.
10. Syssoev A.A. et al. Global'naya energiya – in Russ. (Global Energy), 2024, vol. 30(1), pp. 117–135.
11. Nag A., Rakov V.A. Electromagnetic Pulses Produced by Bouncing-Wave-Type Lightning Discharges. – IEEE Transactions on Electromagnetic Compatibility, 2009, vol. 51(3), pp. 466–470, DOI: 10.1029/2010JD014235.
12. Nag A., Rakov V.A. Compact Intracloud Lightning Discharges: 1. Mechanism of Electromagnetic Radiation and Modeling. – Journal of Geophysical Research, 2010, vol. 115, DOI:10.1029/2010JD014235.
13. Da Silva C.L., Pasko V.P. Physical Mechanism of Initial Breakdown Pulses and Narrow Bipolar Events in Lightning Discharges. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120, pp. 4989–5009, DOI:10.1002/2015JD023209.
14. Cooray V. et al. Modeling Compact Intracloud Discharge (CID) as a Streamer Burst. – Atmosphere, 2020, 11(5), DOI:10.3390/atmos11050549.
15. Smith E.M. et al. Initial Breakdown Pulse Parameters in Intracloud and Cloud-to-Ground Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2018, vol. 123, pp. 2129–2140, DOI:10.1002/2017JD027729.
16. Karunarathna N. et al. Initiation Locations of Lightning Flashes Relative to Radar Reflectivity in Four Small Florida Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2017, 122(12), pp. 6565–6591, DOI:10.1002/2017JD026566.
17. Nag A., DeCarlo B.A., Rakov V.A. Analysis of Microsecond- and Submicrosecond-Scale Electric Field Pulses Produced by Cloud and Ground Lightning Discharges. – Atmospheric Research, 2009, vol. 91(2-4), pp. 316–325, DOI:10.1016/j.atmosres.2008.01.014.
18. Baharudin Z.A. et al. Electric Field Changes Generated by the Preliminary Breakdown for the Negative Cloud-to-Ground Lightning Flashes in Malaysia and Sweden. – Journal of Atmospheric and Solar-Terrestrial Physics, 2012, vol. 84-85, pp. 15–24, DOI:10.1016/j.jastp.2012.04.009.
19. Campos L.Z.S., Saba M.M.F. Visible Channel Development During the Initial Breakdown of a Natural Negative Cloud-to-Ground Flash. – Geophysical Research Letters, 2013, vol. 40, pp. 4756–4761, DOI:10.1002/grl.50904.
20. Stolzenburg M. et al. Leader Observations During the Initial Breakdown Stage of a Lightning Flash. – Journal of Geophysical Research: Atmospheres, 2014, vol. 119, pp. 12,198–12,221, DOI:10.1002/2014JD021994.
21. Marshall T. et al. On the Percentage of Lightning Flashes That Begin with Initial Breakdown Pulses. – Journal of Geophysical Research: Atmospheres, 2014, vol. 119, pp. 445–460, DOI:10.1002/2013JD020854.
22. Lyu F., Cummer S.A., McTague L. Insights into High Peak Current In-Cloud Lightning Events During Thunderstorms. – Geophysical Research Letters, 2015, vol. 42, pp. 6836–6843, DOI:10. 1002/2015GL065047.
23. Chapman R.T. et al. Initial Electric Field Changes of Lightning Flashes in Two Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122, pp. 3718–3732, DOI:10.1002/ 2016JD025859.
24. Kolmašová I. et al. Lightning initiation: Strong Pulses of VHF Radiation Accompany Preliminary Breakdown. – Scientific Reports, 2018, vol. 8, p. 3650, DOI:10.1038/s41598-018-21972-z.
25. Karunarathne N. et al. Studying Sequences of Initial Breakdown Pulses in Cloud-to-Ground Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2020, vol. 125, DOI:10.1029/2019JD032104.
26. Wu T. et al. Preliminary Breakdown of Intracloud Lightning: Initiation Altitude, Propagation Speed, Pulse Train Characteristics, and Step Length Estimation. – Journal of Geophysical Research: Atmosphe-res, 2015, vol. 120, pp. 9071–9086, DOI:10.1002/2015JD023546.
27. Qi Q. et al. High-Speed Video Observations of the Fine Structure of a Natural Negative Stepped Leader at Close Distance. – Atmospheric Research, 2016, vol. 178-179, pp. 260–267, DOI:10.1016/j.atmosres.2016.03.027.
28. Nag A., Rakov V.A. A Unified Engineering Model of the First Stroke in Downward Negative Lightning. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121, pp. 2188–2204, DOI:10.1002/2015JD023777.
29. Vance E.F. Coupling to Shielded Cables. New York: Wiley, 1978, 183 p.
30. Delfino F. et al. Lightning Electromagnetic Field Calculations in the Presence of a Conducting Ground: the Numerical Treatment of Sommerfeld’s Integrals. – Lightning Electromagnetics. Vol. 2: Electrical Processes and Effects, 2022, pp. 201–241, DOI:10.1049/PBPO127G_ch6.
31. Nucci C.A., Rachidi F., Rubinstein M. Interaction of Lightning-Generated Electromagnetic Fields with Overhead and Underground Cables. – in Book: Lightning Electromagnetics. Vol. 2: Electrical Processes and Effects, 2022, pp. 291–324, DOI:10.1049/PBPO127G_ch8.
32. Tkachenko S.V., Nich Yu.B., Korovkin N.V. Elektrichestvo – in Russ. (Electricity), 2018, No. 7, pp. 4–18.
33. Grinberg G.A., Bonshtedt B.E. Zhurnal Tekhnicheskoy Fiziki – in Russ. (Journal of Technical Physics), 1954, vol. 24(1), pp. 67–95.
34. Iudin D.I. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 6, pp. 77–88.
35. Iudin D.I. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 7, pp. 66–76.
36. Kirillov V.Yu., Tomilin M.M. Elektrichestvo – in Russ. (Electricity), 2024, No. 9, pp. 17–22
---
The work was supported by the Russian Science Foundation (Project No. 23-21-00057)