Estimation of the Overvoltage Induced on a Transmission Line by a High-Current Intracloud Lightning
Abstract
The study presents estimations of the overvoltage induced on a transmission line by a high-current intracloud lightning discharge. Intense current pulses with amplitudes of up to dozens (in rare cases hundreds) of kiloamperes and durations of the order of 10 μs can be generated by either compact intracloud discharges or initial breakdown pulses. Since their radiation electric field strengths are comparable to that of return strokes, they may be dangerous to low-voltage communication cables and power lines. The numerical model employs the current source as a harmonic dipole and we use the multi-chain equivalent circuit method to calculate the induced overvoltage at different signal frequencies and transmission line spatial orientations. The cases of 10 km long high and low voltage power lines and 100 m long coaxial cable screen are considered. It is found that in most cases the maximal induced potential drop between the transmission line and the ground does not exceed 1 kV or so. However, there are certain frequencies and line orientations at which the induced overvoltage can be comparable with the nominal voltage of most power lines and, therefore, may cause an outage. The development prospects of the model are discussed and possible recommendations concerning protection against the overvoltage caused by a high-current intracloud lightning discharge are proposed.
References
2. Romps D.M. et al. Projected Increase in Lightning Strikes in the United States due to Global Warming. – Science, 2014, vol. 346, pp. 851–854, DOI:10.1126/science.1259100.
3. Yuan T. et al. Observational Evidence of Aerosol Enhancement of Lightning Activity and Convective Invigoration. – Geophysical Research Letters, 2011, vol. 38, p. L04701, DOI:10.1029/2010GL046052.
4. Le Vine D.M. Sources of the Strongest RF Radiation from Lightning. – Journal of Geophysical Research, 1980, vol. 85, pp. 4091–4095, DOI: 10.1029/JC085iC07p04091s.
5. Rakov V.A. et al. New Insights into the Lightning Discharge Processes. – Plasma Sources Science and Technology, 2022, vol. 31, DOI:10.1088/1361-6595/ac9330.
6. Zhang H. et al. Locating Narrow Bipolar Events with Single-Station Measurement of Low-Frequency Magnetic Fields. – Journal of Atmospheric and Solar-Terrestrial Physics, 2016, vol. 143-144, pp. 88–101, DOI:10.1016/j.jastp.2016.03.009.
7. Leal A.F.R., Rakov V.A. A Study of the Context in Which Compact Intracloud Discharges Occur. – Scientific Reports, 2019, vol. 9, DOI:10.1038/s41598-019-48680-6.
8. Chen S. et al. Clusters of Compact Intracloud Discharges (CIDs) in Overshooting Convective Surges. – Journal of Geophysical Research: Atmospheres, 2024, vol. 129, DOI:10.1029/2023JD040307.
9. Smith D.A. et al. A Distinct Class of Isolated Intracloud Lightning Discharges and Their Associated Radio Emissions. – Journal of Geophysical Research, 1999, vol. 104(D4), pp. 4189–4212, DOI:10.1029/1998JD200045.
10. Сысоев А.М. и др. Численное моделирование сильноточных атмосферных разрядов с учетом термодинамики плазменных каналов. Ч. 2. Анализ результатов моделирования. – Глобальная энергия, 2024, vol. 30(1), pp. 117–135.
11. Nag A., Rakov V.A. Electromagnetic Pulses Produced by Bouncing-Wave-Type Lightning Discharges. – IEEE Transactions on Electromagnetic Compatibility, 2009, vol. 51(3), pp. 466–470, DOI: 10.1029/2010JD014235.
12. Nag A., Rakov V.A. Compact Intracloud Lightning Discharges: 1. Mechanism of Electromagnetic Radiation and Modeling. – Journal of Geophysical Research, 2010, vol. 115, DOI:10.1029/2010JD014235.
13. Da Silva C.L., Pasko V.P. Physical Mechanism of Initial Breakdown Pulses and Narrow Bipolar Events in Lightning Discharges. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120, pp. 4989–5009, DOI:10.1002/2015JD023209.
14. Cooray V. et al. Modeling Compact Intracloud Discharge (CID) as a Streamer Burst. – Atmosphere, 2020, 11(5), DOI:10.3390/atmos11050549.
15. Smith E.M. et al. Initial Breakdown Pulse Parameters in Intracloud and Cloud-to-Ground Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2018, vol. 123, pp. 2129–2140, DOI:10.1002/2017JD027729.
16. Karunarathna N. et al. Initiation Locations of Lightning Flashes Relative to Radar Reflectivity in Four Small Florida Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2017, 122(12), pp. 6565–6591, DOI:10.1002/2017JD026566.
17. Nag A., DeCarlo B.A., Rakov V.A. Analysis of Microsecond- and Submicrosecond-Scale Electric Field Pulses Produced by Cloud and Ground Lightning Discharges. – Atmospheric Research, 2009, vol. 91(2-4), pp. 316–325, DOI:10.1016/j.atmosres.2008.01.014.
18. Baharudin Z.A. et al. Electric Field Changes Generated by the Preliminary Breakdown for the Negative Cloud-to-Ground Lightning Flashes in Malaysia and Sweden. – Journal of Atmospheric and Solar-Terrestrial Physics, 2012, vol. 84-85, pp. 15–24, DOI:10.1016/j.jastp.2012.04.009.
19. Campos L.Z.S., Saba M.M.F. Visible Channel Development During the Initial Breakdown of a Natural Negative Cloud-to-Ground Flash. – Geophysical Research Letters, 2013, vol. 40, pp. 4756–4761, DOI:10.1002/grl.50904.
20. Stolzenburg M. et al. Leader Observations During the Initial Breakdown Stage of a Lightning Flash. – Journal of Geophysical Research: Atmospheres, 2014, vol. 119, pp. 12,198–12,221, DOI:10.1002/2014JD021994.
21. Marshall T. et al. On the Percentage of Lightning Flashes That Begin with Initial Breakdown Pulses. – Journal of Geo-physical Research: Atmospheres, 2014, vol. 119, pp. 445–460, DOI:10.1002/ 2013JD020854.
22. Lyu F., Cummer S.A., McTague L. Insights into High Peak Current In-Cloud Lightning Events During Thunderstorms. – Geophysical Research Letters, 2015, vol. 42, pp. 6836–6843, DOI:10. 1002/2015GL065047.
23. Chapman R.T. et al. Initial Electric Field Changes of Lightning Flashes in Two Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122, pp. 3718–3732, DOI:10.1002/ 2016JD025859.
24. Kolmašová I. et al. Lightning initiation: Strong Pulses of VHF Radiation Accompany Preliminary Breakdown. – Scientific Reports, 2018, vol. 8, p. 3650, DOI:10.1038/s41598-018-21972-z.
25. Karunarathne N. et al. Studying Sequences of Initial Breakdown Pulses in Cloud-to-Ground Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2020, vol. 125, DOI:10.1029/ 2019JD032104.
26. Wu T. et al. Preliminary Breakdown of Intracloud Lightning: Initiation Altitude, Propagation Speed, Pulse Train Characteristics, and Step Length Estimation. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120, pp. 9071–9086, DOI:10.1002/2015JD023546.
27. Qi Q. et al. High-Speed Video Observations of the Fine Structure of a Natural Negative Stepped Leader at Close Distance. – Atmospheric Research, 2016, vol. 178-179, pp. 260–267, DOI:10.1016/j.atmosres.2016.03.027.
28. Nag A., Rakov V.A. A Unified Engineering Model of the First Stroke in Downward Negative Lightning. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121, pp. 2188–2204, DOI:10.1002/2015JD023777.
29. Vance E.F. Coupling to Shielded Cables. New York: Wiley, 1978, 183 p.
30 Delfino F. et al. Lightning Electromagnetic Field Calculations in the Presence of a Conducting Ground: the Numerical Treatment of Sommerfeld’s Integrals. – Lightning Electromagnetics. Vol. 2: Electrical Processes and Effects, 2022, pp. 201–241, DOI:10.1049/PBPO127G_ch6.
31. Nucci C.A., Rachidi F., Rubinstein M. Interaction of Lightning-Generated Electromagnetic Fields with Overhead and Underground Cables. – in Book: Lightning Electromagnetics. Vol. 2: Electrical Processes and Effects, 2022, pp. 291–324, DOI:10.1049/PBPO127G_ch8.
32. Ткаченко С.В., Нич Ю., Коровкин Н.В. Влияние высокочастотных электромагнитных полей на провода большого сечения. – Электричество, 2018, № 7, с. 4–18.
33. Гринберг Г.А., Бонштедт Б.Э. Основы точной теории волнового поля линий передачи. – Журнал технической физики, 1954, т. 24(1), с. 67–95.
34. Иудин Д.И. и др. Разряд молнии как самоорганизующаяся транспортная сеть. Ч.1. Концепция асимметричного разрядного древа. – Электричество, 2023, № 6, с. 77–88.
35. Иудин Д.И. и др. Разряд молнии как самоорганизующаяся транспортная сеть. Ч.2. Точка реверса и транзиенты молнии. – Электричество, 2023, № 7, с. 66–76.
36. Кириллов В.Ю., Томилин M.M. Влияние электромагнитного резонанса в приборных модулях летательного аппарата на наведённые кондуктивные помехи. – Электричество, 2024, № 9, с. 17–22.
---
Работа выполнена при поддержке Российского научного фонда (проект № 23-21-00057)
#
1. Rakov V.A., Uman M.A. Lightning: Physics and Effects. New York: Cambridge University Press, 2003, 687 p.
2. Romps D.M. et al. Projected Increase in Lightning Strikes in the United States due to Global Warming. – Science, 2014, vol. 346, pp. 851–854, DOI:10.1126/science.1259100.
3. Yuan T. et al. Observational Evidence of Aerosol Enhancement of Lightning Activity and Convective Invigoration. – Geophysical Research Letters, 2011, vol. 38, p. L04701, DOI:10.1029/2010GL046052.
4. Le Vine D.M. Sources of the Strongest RF Radiation from Lightning. – Journal of Geophysical Research, 1980, vol. 85, pp. 4091–4095, DOI: 10.1029/JC085iC07p04091s.
5. Rakov V.A. et al. New Insights into the Lightning Discharge Processes. – Plasma Sources Science and Technology, 2022, vol. 31, DOI:10.1088/1361-6595/ac9330.
6. Zhang H. et al. Locating Narrow Bipolar Events with Single-Station Measurement of Low-Frequency Magnetic Fields. – Journal of Atmospheric and Solar-Terrestrial Physics, 2016, vol. 143-144, pp. 88–101, DOI:10.1016/j.jastp.2016.03.009.
7. Leal A.F.R., Rakov V.A. A Study of the Context in Which Compact Intracloud Discharges Occur. – Scientific Reports, 2019, vol. 9, DOI:10.1038/s41598-019-48680-6.
8. Chen S. et al. Clusters of Compact Intracloud Discharges (CIDs) in Overshooting Convective Surges. – Journal of Geophysical Research: Atmospheres, 2024, vol. 129, DOI:10.1029/2023JD040307.
9. Smith D.A. et al. A Distinct Class of Isolated Intracloud Lightning Discharges and Their Associated Radio Emissions. – Journal of Geophysical Research, 1999, vol. 104(D4), pp. 4189–4212, DOI:10.1029/1998JD200045.
10. Syssoev A.A. et al. Global'naya energiya – in Russ. (Global Energy), 2024, vol. 30(1), pp. 117–135.
11. Nag A., Rakov V.A. Electromagnetic Pulses Produced by Bouncing-Wave-Type Lightning Discharges. – IEEE Transactions on Electromagnetic Compatibility, 2009, vol. 51(3), pp. 466–470, DOI: 10.1029/2010JD014235.
12. Nag A., Rakov V.A. Compact Intracloud Lightning Discharges: 1. Mechanism of Electromagnetic Radiation and Modeling. – Journal of Geophysical Research, 2010, vol. 115, DOI:10.1029/2010JD014235.
13. Da Silva C.L., Pasko V.P. Physical Mechanism of Initial Breakdown Pulses and Narrow Bipolar Events in Lightning Discharges. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120, pp. 4989–5009, DOI:10.1002/2015JD023209.
14. Cooray V. et al. Modeling Compact Intracloud Discharge (CID) as a Streamer Burst. – Atmosphere, 2020, 11(5), DOI:10.3390/atmos11050549.
15. Smith E.M. et al. Initial Breakdown Pulse Parameters in Intracloud and Cloud-to-Ground Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2018, vol. 123, pp. 2129–2140, DOI:10.1002/2017JD027729.
16. Karunarathna N. et al. Initiation Locations of Lightning Flashes Relative to Radar Reflectivity in Four Small Florida Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2017, 122(12), pp. 6565–6591, DOI:10.1002/2017JD026566.
17. Nag A., DeCarlo B.A., Rakov V.A. Analysis of Microsecond- and Submicrosecond-Scale Electric Field Pulses Produced by Cloud and Ground Lightning Discharges. – Atmospheric Research, 2009, vol. 91(2-4), pp. 316–325, DOI:10.1016/j.atmosres.2008.01.014.
18. Baharudin Z.A. et al. Electric Field Changes Generated by the Preliminary Breakdown for the Negative Cloud-to-Ground Lightning Flashes in Malaysia and Sweden. – Journal of Atmospheric and Solar-Terrestrial Physics, 2012, vol. 84-85, pp. 15–24, DOI:10.1016/j.jastp.2012.04.009.
19. Campos L.Z.S., Saba M.M.F. Visible Channel Development During the Initial Breakdown of a Natural Negative Cloud-to-Ground Flash. – Geophysical Research Letters, 2013, vol. 40, pp. 4756–4761, DOI:10.1002/grl.50904.
20. Stolzenburg M. et al. Leader Observations During the Initial Breakdown Stage of a Lightning Flash. – Journal of Geophysical Research: Atmospheres, 2014, vol. 119, pp. 12,198–12,221, DOI:10.1002/2014JD021994.
21. Marshall T. et al. On the Percentage of Lightning Flashes That Begin with Initial Breakdown Pulses. – Journal of Geophysical Research: Atmospheres, 2014, vol. 119, pp. 445–460, DOI:10.1002/2013JD020854.
22. Lyu F., Cummer S.A., McTague L. Insights into High Peak Current In-Cloud Lightning Events During Thunderstorms. – Geophysical Research Letters, 2015, vol. 42, pp. 6836–6843, DOI:10. 1002/2015GL065047.
23. Chapman R.T. et al. Initial Electric Field Changes of Lightning Flashes in Two Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122, pp. 3718–3732, DOI:10.1002/ 2016JD025859.
24. Kolmašová I. et al. Lightning initiation: Strong Pulses of VHF Radiation Accompany Preliminary Breakdown. – Scientific Reports, 2018, vol. 8, p. 3650, DOI:10.1038/s41598-018-21972-z.
25. Karunarathne N. et al. Studying Sequences of Initial Breakdown Pulses in Cloud-to-Ground Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2020, vol. 125, DOI:10.1029/2019JD032104.
26. Wu T. et al. Preliminary Breakdown of Intracloud Lightning: Initiation Altitude, Propagation Speed, Pulse Train Characteristics, and Step Length Estimation. – Journal of Geophysical Research: Atmosphe-res, 2015, vol. 120, pp. 9071–9086, DOI:10.1002/2015JD023546.
27. Qi Q. et al. High-Speed Video Observations of the Fine Structure of a Natural Negative Stepped Leader at Close Distance. – Atmospheric Research, 2016, vol. 178-179, pp. 260–267, DOI:10.1016/j.atmosres.2016.03.027.
28. Nag A., Rakov V.A. A Unified Engineering Model of the First Stroke in Downward Negative Lightning. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121, pp. 2188–2204, DOI:10.1002/2015JD023777.
29. Vance E.F. Coupling to Shielded Cables. New York: Wiley, 1978, 183 p.
30. Delfino F. et al. Lightning Electromagnetic Field Calculations in the Presence of a Conducting Ground: the Numerical Treatment of Sommerfeld’s Integrals. – Lightning Electromagnetics. Vol. 2: Electrical Processes and Effects, 2022, pp. 201–241, DOI:10.1049/PBPO127G_ch6.
31. Nucci C.A., Rachidi F., Rubinstein M. Interaction of Lightning-Generated Electromagnetic Fields with Overhead and Underground Cables. – in Book: Lightning Electromagnetics. Vol. 2: Electrical Processes and Effects, 2022, pp. 291–324, DOI:10.1049/PBPO127G_ch8.
32. Tkachenko S.V., Nich Yu.B., Korovkin N.V. Elektrichestvo – in Russ. (Electricity), 2018, No. 7, pp. 4–18.
33. Grinberg G.A., Bonshtedt B.E. Zhurnal Tekhnicheskoy Fiziki – in Russ. (Journal of Technical Physics), 1954, vol. 24(1), pp. 67–95.
34. Iudin D.I. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 6, pp. 77–88.
35. Iudin D.I. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 7, pp. 66–76.
36. Kirillov V.Yu., Tomilin M.M. Elektrichestvo – in Russ. (Electricity), 2024, No. 9, pp. 17–22
---
The work was supported by the Russian Science Foundation (Project No. 23-21-00057)