Minimizing the Current of Permanent Magnet Synchronous Motors with a Vector Control System

  • Nikolay V. CHUPRINA
  • Alexandr A. PUGACHEV
Keywords: PMSM, vector control, minimum current value, search system, torque, dq coordinate system, equivalent circuit, magnetic asymmetry

Abstract

Permanent magnet synchronous motors (PMSM) are a promising choice for use in transport and various industries. It has been found that PMSM with magnetic asymmetry have a number of advantages in comparison with motors with magnetic symmetry. The aim of the article is to minimize the stator winding current of a PMSM with a vector control system. Based on the methods of electric drive theory, an equivalent circuit of PMSM with magnetic asymmetry in the dq coordinate system was compiled, on the basis of which the motor mathematical model was developed. The model takes into account nonlinear effects associated with the stator magnetic circuit saturation, power loss in the stator magnetic circuit, and the effect of temperature on the equivalent circuit parameters. For a vector control system with orientation by the PMSM stator flux linkage, an extreme dependence of the stator winding current on its projection on the d axis was obtained. A formula for setting the stator winding current projection on the d axis, which ensures the minimum value of the stator winding current in the constant torque zone, has been derived analytically. Based on the methods of automatic control theory, an algorithm and a system for searching the minimum value of the stator winding current in the constant torque zone have been developed, which is insensitive to changes in the equivalent circuit parameters. The stator winding current projection on the d axis is used in the search system as the control output. The operability of the developed control system has been confirmed by computer simulation of an electric drive with a 132 kW PMSM. Conclusions have been drawn on the use of these systems in various electric drives.

Author Biographies

Nikolay V. CHUPRINA

(Bryansk State Technical University, Bryansk, Russia) – Associate Professor of the High-Tech Transport Engineering Dept., Cand. Sci. (Eng.).

Alexandr A. PUGACHEV

(Bryansk State Technical University, Bryansk, Russia) – Professor of the High-Tech Transport Engineering Dept., Dr. Sci. (Eng.), Docent.

References

1. Sharma R.K. et al. Vector Control of a Permanent Magnet Synchronous Motor. – Annual IEEE India Conference, 2008, vol. 1, pp. 81–86, DOI: 10.1109/INDCON.2008.4768805.
2. Lashkevich M. et al. Control Strategy for Synchronous Homopolar Motor in Traction Applications. – 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 6607–6611, DOI: 10.1109/IECON.2017.8217153.
3. Анучин А.С. Системы управления электроприводов. М.: Изд-во МЭИ, 2015, 373 с.
4. Козярук А.Е., Рудаков В.В. Современное и перспективное алгоритмическое обеспечение частотнорегулируемых электроприводов. СПб.: Санкт-Петербургская электротехническая компания, 2004, 128 с.
5. Anuchin A., Bychkov M. The Modern Electric Drives – Using of Information Technologies and the Problems of Education. – 2017 IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga 397 Technical University (RTUCON), 2017, DOI: 10.1109/RTUCON.2017.8124802.
6. Matsuoka K. Development Trend of the Permanent Magnet Synchronous Motor for Railway Traction. – IEEJ Transactions on Electrical and Electronic Engineering, 2007, vol. 2, pp. 154–161, DOI: 10.1002/tee.20121.
7. Yang Y. et al. Comparison of Interior Permanent Magnet Motor Topologies for Traction Applications. – IEEE Transactions on Transportation Electrification, 2017, vol. 3 (1), pp. 86–97, DOI: 10.1109/TTE.2016.2614972.
8. Андриянов А.И. Расчет оптимальных параметров систем управления нелинейными динамическими процессами импульсных преобразователей напряжения. – Автоматизация и моделирование в проектировании и управлении, 2022, № 4, с. 87–96.
9. Омара А.М., Слепцов М.А. Прямое управление моментом в тяговом электроприводе с магнитоэлектрическим двигателем на основе пространственно-векторной модуляции. – Электричество, 2019, № 5, с. 47–57.
10. Li X. et al. Vector Control of PMSM Based on Improved Sliding Mode Observer and Controller. – Journal of Physics: Conference Series, 2023, DOI 10.1088/1742-6596/2479/1/012016.
11. Kamel H.M., Hasanien H.M., Ibrahim H.E.A. Speed Control of Permanent Magnet Synchronous Motor Using Fuzzy Logic Controller. – IEEE International Electric Machines and Drives Conference, 2009, pp. 1587–1591, DOI: 10.1109/IEMDC.2009.5075415.
12. Alzayed M., Chaoui H., Farajpour Y. Dynamic Direct Voltage MTPA Current Sensorless Drives for Interior PMSM-Based Electric Vehicles. – IEEE Transactions on Vehicular Technology, 2023, vol. 72, No. 3, pp. 3175–3185, DOI: 10.1109/TVT.2022.3219763.
13. Liu T. et al. A MTPA Control Strategy for Mono-Inverter Multi-PMSM System. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 6, pp. 7165–7177, DOI: 10.1109/TPEL.2020.3038797.
14. Inoue T. et al. Mathematical Model for MTPA Control of Permanent-Magnet Synchronous Motor in Stator Flux Linkage Synchronous Frame. – IEEE Transactions on Industry Applications, 2015, vol. 51, No. 5, pp. 3620–3628, DOI: 10.1109/TIA.2015.2417128.
15. Boldea I., Paicu M.C., Andreescu G.-D. Active Flux Concept for Motion-Sensorless Unified AC Drives. – IEEE Transactions on Power Electronics, 2008, vol. 23. No. 5, pp. 2612–2618. DOI: 10.1109/TPEL.2008.2002394.
16. Inkov Y.M. et al. Formation of a Task of the Stator Flux Linkage of a Synchronous Motor with Permanent Magnets in a Direct Torque-Control System. – Russian Electrical Engineering, 2023, vol. 94, No. 9, pp. 645–649, DOI: 10.3103/S1068371223090080.
17. Pugachev A. Efficiency Increasing of Induction Motor Scalar Control Systems. – International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2017, DOI: 10.1109/ICIEAM.2017.8076317.
18. Shinohara A. et al. Correction of Reference Flux for MTPA Control in Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drives. – International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), 2014, pp. 324–329, DOI: 10.1109/IPEC.2014.6869601.
19. Пугачев А.А., Чуприна Н.В. Система прямого управления моментом синхронного двигателя с постоянными магнитами с поиском минимума тока статора. – Известия высших учебных заведений. Электромеханика, 2024, № 1 (67), с. 46–55.
20. Chen X., Wang J., Griffo A. A High-Fidelity and Computationally Efficient Electrothermally Coupled Model for Interior Permanent-Magnet Machines in Electric Vehicle Traction Applica-tions. – IEEE Transactions on Transportation Electrification, 2015. vol. 1 (4), pp. 336–347, DOI: 10.1109/TTE.2015.2478257.
#
1. Sharma R.K. et al. Vector Control of a Permanent Magnet Synchronous Motor. – Annual IEEE India Conference, 2008, vol. 1, pp. 81–86, DOI: 10.1109/INDCON.2008.4768805.
2. Lashkevich M. et al. Control Strategy for Synchronous Homopolar Motor in Traction Applications. – 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 6607–6611, DOI: 10.1109/IECON.2017.8217153.
3. Anuchin A.S. Sistemy upravleniya elektroprivodov (Electric Drive Control Systems). M.: Izd-vo MEI, 2015, 373 p.
4. Kozyaruk A.E., Rudakov V.V. Sovremennoe i perspektivnoe algoritmicheskoe obespechenie chastotnoreguliruemyh elektroprivodov (Modern and Perspective Algorithmic Support of Frequency Controlled Electric Drives). SPb.: Sankt-Peterburgskaya elektrotehnicheskaya kompaniya, 2004, 128 p.
5. Anuchin A., Bychkov M. The Modern Electric Drives – Using of Information Technologies and the Problems of Education. – 2017 IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga 397 Technical University (RTUCON), 2017, DOI: 10.1109/RTUCON.2017.8124802.
6. Matsuoka K. Development Trend of the Permanent Magnet Synchronous Motor for Railway Traction. – IEEJ Transactions on Electrical and Electronic Engineering, 2007, vol. 2, pp. 154–161, DOI: 10.1002/tee.20121.
7. Yang Y. et al. Comparison of Interior Permanent Magnet Motor Topologies for Traction Applications. – IEEE Transactions on Transportation Electrification, 2017, vol. 3 (1), pp. 86–97, DOI: 10.1109/TTE.2016.2614972.
8. Andriyanov A.I. Avtomatizatsiya i modelirovanie v proektiro-vanii i upravlenii – in Russ. (Automation and Modeling in Design and Management), 2022, No. 4, pp. 87–96.
9. Omara A.M., Sleptsov M.A. Elektrichestvo – in Russ. (Electricity), 2019, No. 5, pp. 47–57.
10. Li X. et al. Vector Control of PMSM Based on Improved Sliding Mode Observer and Controller. – Journal of Physics: Conference Series, 2023, DOI 10.1088/1742-6596/2479/1/012016.
11. Kamel H.M., Hasanien H.M., Ibrahim H.E.A. Speed Control of Permanent Magnet Synchronous Motor Using Fuzzy Logic Control-ler. – IEEE International Electric Machines and Drives Conference, 2009, pp. 1587–1591, DOI: 10.1109/IEMDC.2009.5075415.
12. Alzayed M., Chaoui H., Farajpour Y. Dynamic Direct Vol-tage MTPA Current Sensorless Drives for Interior PMSM-Based Electric Vehicles. – IEEE Transactions on Vehicular Technology, 2023, vol. 72, No. 3, pp. 3175–3185, DOI: 10.1109/TVT.2022.3219763.
13. Liu T. et al. A MTPA Control Strategy for Mono-Inverter Multi-PMSM System. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 6, pp. 7165–7177, DOI: 10.1109/TPEL.2020.3038797.
14. Inoue T. et al. Mathematical Model for MTPA Control of Permanent-Magnet Synchronous Motor in Stator Flux Linkage Synchronous Frame. – IEEE Transactions on Industry Applications, 2015, vol. 51, No. 5, pp. 3620–3628, DOI: 10.1109/TIA.2015.2417128.
15. Boldea I., Paicu M.C., Andreescu G.-D. Active Flux Concept for Motion-Sensorless Unified AC Drives. – IEEE Transactions on Power Electronics, 2008, vol. 23. No. 5, pp. 2612–2618. DOI: 10.1109/TPEL.2008.2002394.
16. Inkov Y.M. et al. Formation of a Task of the Stator Flux Linkage of a Synchronous Motor with Permanent Magnets in a Direct Torque-Control System. – Russian Electrical Engineering, 2023, vol. 94, No. 9, pp. 645–649, DOI: 10.3103/S1068371223090080.
17. Pugachev A. Efficiency Increasing of Induction Motor Scalar Control Systems. – International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2017, DOI: 10.1109/ICIEAM.2017.8076317.
18. Shinohara A. et al. Correction of Reference Flux for MTPA Control in Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drives. – International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), 2014, pp. 324–329, DOI: 10.1109/IPEC.2014.6869601.
19. Pugachev A.A., Chuprina N.V. Izvestiya vysshih uchebnyh zavedeniy. Elektromehanika – in Russ. (News of Higher Educational Institutions. Electromechanics), 2024, No. 1 (67), pp. 46–55.
20. Chen X., Wang J., Griffo A. A High-Fidelity and Computationally Efficient Electrothermally Coupled Model for Interior Permanent-Magnet Machines in Electric Vehicle Traction Applicati-ons. – IEEE Transactions on Transportation Electrification, 2015. vol. 1 (4), pp. 336–347, DOI: 10.1109/TTE.2015.2478257
Published
2025-04-24
Section
Article