A Method for Adjusting the Absolute Rotor Position Sensor of a Permanent Magnet Synchronous Motor with a Distributed Winding

  • Nikita K. TRET’YAKOV
  • Vladimir E. KUZNETSOV
  • Pavel V. REN’E
Keywords: adjustment, absolute encoder, PMSM, converter, rotor deviation angle, control system

Abstract

The article addresses matters concerned with the alignment accuracy of the absolute rotor position sensor of a permanent magnet synchronous motor automatically controlled by a high-frequency low-voltage converter. A modern, easiest to implement alignment method and the structure of a control system using a rotor position sensor are considered. A full-scale mockup of the terminal device, as well as a load bench, were modeled, developed, manufactured and tested. A tool for visualizing the data and operation processes occurring in the microcontroller of the high-frequency converter control system in real time is considered. A permanent magnet synchronous motor control system model is built. The article presents the results obtained from practical tests and simulation of the control system with and without using the controllers of the current direct and quadrature components, as well as at different rotor position sensor deviation angles. The regularity linking the variation of the stator current direct and quadrature components with the rotor position sensor’s initial positioning angle error is derived. The results of experimental studies and mathematical simulation (phase current, current direct and quadrature components, and rotor position angle time curves) are presented. An algorithm for automatically adjusting the rotor position sensor of a permanent magnet synchronous motor with reference to deviation of the current direct component in response to a change in the rotor rotation direction with angle determination accuracy up to 0.18° has been developed and implemented.

Author Biographies

Nikita K. TRET’YAKOV

(St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia) – Postgraduate Student of the Automatic Control Systems Dept.

Vladimir E. KUZNETSOV

(St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia) – Professor of the Automatic Control Systems Dept., Dr. Sci. (Eng.), Professor.

Pavel V. REN’E

(St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia) – Postgraduate Student of the Automatic Control Systems Dept.

References

1. Гридин В.М. Бесконтактные двигатели постоянного тока с дискретным управлением и модуляцией тока по положению ротора. – Электричество, 2021, № 3, с. 60–64.
2. Walden J. et al. High Frequency Injection Sensorless Control for a Permanent Magnet Synchronous Machine Driven by an FPGA Controlled SiC Inverter. – IEEE 8th Workshop on Wide Bandgap Power Devices and Applications, 2021, pp. 194–198, DOI: 10.1109/WiPDA49284.2021.9645105.
3. Wan Q., Wang H., Sun. X. Position Tracking Control for PMSM System Based on Continuous Sliding Mode Control and Sliding Mode Observer. – 41st Chinese Control Conference, 2022, pp. 2917–2922, DOI: 10.23919/CCC55666.2022.9902155.
4. Vidlak M.A. Novel Constant Power Factor Loop for Stable V/f Control of PMSM in Comparison against Sensorless FOC with Luenberger-Type Back-EMF Observer Verified by Experiments. – Applied Sciences, 2022, vol. 12, No. 18, DOI: 10.3390/app12189179.
5. Вельченко А.А., Павлюковец С.А., Радкевич А.А. Математическая модель бесколлекторного двигателя постоянного тока на основе уравнения напряжения трёхфазной обмотки. – Системный анализ и прикладная информатика, 2024, № 1, с. 19–25.
6. Воронин С.Г. и др. Исследование электромагнитого КПД и пульсаций момента вентильного двигателя с дискретной коммутацией обмотки при несинусоидальной форме ЭДС. – Вестник Южно-Уральского государственного университета. Серия: Энергетика, 2023, № 4, с. 14–23.
7. Soysa G.D. et al. Impact of SNR on Sensorless Control of PMSMs with PHF Signal Injection. – 13th International Conference on Power and Energy Systems, 2023, pp. 82–87, DOI: 10.1109/ICPES59999.2023.10400175.
8. Воробьев М.М. и др. Унифицированные интерфейсные модули для платформы управления двигателями. – Наноиндустрия, 2020, № S5-1, с. 181–185.
9. Ni R. et al. Dual-Gap Dual-Pole Composite Machine for Mechanical Rotor Position Estimation. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 9, pp. 10481–10489, DOI: 10.1109/TPEL.2021.3063513.
10. Ключников А.Т. Вычислитель скорости для бездатчикового управления асинхронным двигателем. – Электричество, 2021, № 2, с. 54–59.
11. Liu H. Design of a High-Precision Multi-Channel Digital Signal Generator. – IEEE Access, 2024, vol. 12, pp. 152839–152849, DOI: 10.1109/ACCESS.2024.3480448.
12. Майков В. Стандарты однопарного Ethernet. – Электронные компоненты, 2022, № 7, с. 21–23.
13. Ковалев К.Л. и др. Обеспечение тактовой устойчивости силовых преобразователей. – Электричество, 2024, № 11, с. 43–50.
14. Третьяков Н.К. Проектирование источников однофазного переменного напряжения. – Практическая силовая электроника, 2024, № 4, с. 47–51.
15. Sun J., Wang M., Li L. A New Method for Automatic Identification of Electricmechanical Angle Deviation of SPMLSM. – 25th International Conference on Electrical Machines and Systems, 2022, DOI: 10.1109/ICEMS56177.2022.9982813.
16. Idris A. et al. Torque Analysis of V-type Interior PMSM for Electric Vehicle Based on FEA Simulation. – 6th International Conference on Information Technology, Information Systems and Electrical Engineering, 2022, DOI: 10.1109/ICITISEE57756.2022.10057840.
17. Sohagh K.S. et al. Analysis of Id-Iq Strategy for Active Power Filter. – 15th IEEE Conference on Industrial Electronics and Applications, 2020, pp. 722–725, DOI: 10.1109/ICIEA48937.2020.9248335.
18. Degel W. et al. Scalable Slip Control With Torque Vectoring Including Input-to-State Stability Analysis. – IEEE Transactions on Control Systems Technology, 2023, vol. 31, No. 3, pp. 1250–1265, DOI: 10.1109/TCST.2022.3224839.
#
1. Gridin V.M. Elektrichestvo – in Russ. (Electricity), 2021, No. 3, pp. 60–64.
2. Walden J. et al. High Frequency Injection Sensorless Control for a Permanent Magnet Synchronous Machine Driven by an FPGA Controlled SiC Inverter. – IEEE 8th Workshop on Wide Bandgap Power Devices and Applications, 2021, pp. 194–198, DOI: 10.1109/WiPDA49284.2021.9645105.
3. Wan Q., Wang H., Sun. X. Position Tracking Control for PMSM System Based on Continuous Sliding Mode Control and Sliding Mode Observer. – 41st Chinese Control Conference, 2022, pp. 2917–2922, DOI: 10.23919/CCC55666.2022.9902155.
4. Vidlak M.A. Novel Constant Power Factor Loop for Stable V/f Control of PMSM in Comparison against Sensorless FOC with Luenberger-Type Back-EMF Observer Verified by Experiments. – Applied Sciences, 2022, vol. 12, No. 18, DOI: 10.3390/app12189179.
5. Vel’chenko A.A., Pavlyukovets S.A., Radkevich A.A. Sistemnyy analiz i prikladnaya informatika – in Russ. (System Analysis and Applied Informatics), 2024, No. 1, pp. 19–25.
6. Voronin S.G. et al. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Energetika – in Russ. (Bulletin of South Ural State University. Series: Power Engineering), 2023, No. 4, pp. 14–23.
7. Soysa G.D. et al. Impact of SNR on Sensorless Control of PMSMs with PHF Signal Injection. – 13th International Conference on Power and Energy Systems, 2023, pp. 82–87, DOI: 10.1109/ICPES59999.2023.10400175.
8. Vorob’ev M.M. et al. Nanoindustriya – in Russ. (Nanotechnology Industry), 2020, No. S5-1, pp. 181–185.
9. Ni R. et al. Dual-Gap Dual-Pole Composite Machine for Mechanical Rotor Position Estimation. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 9, pp. 10481–10489, DOI: 10.1109/TPEL.2021.3063513.
10. Klyuchnikov A.T. Elektrichestvo – in Russ. (Electricity), 2021, No. 2, pp. 54–59.
11. Liu H. Design of a High-Precision Multi-Channel Digital Signal Generator. – IEEE Access, 2024, vol. 12, pp. 152839–152849, DOI: 10.1109/ACCESS.2024.3480448.
12. Maykov V. Elektronnye komponenty – in Russ. (Electronic Components), 2022, No. 7, pp. 21–23.
13. Kovalev K.L. et al. Elektrichestvo – in Russ. (Electricity), 2024, No. 11, pp. 43–50.
14. Tret’yakov N.K. Prakticheskaya silovaya elektronika – in Russ. (Practical Power Electronics), 2024, No. 4, pp. 47–51.
15. Sun J., Wang M., Li L. A New Method for Automatic Identification of Electric-mechanical Angle Deviation of SPMLSM. – 25th International Conference on Electrical Machines and Systems, 2022, DOI: 10.1109/ICEMS56177.2022.9982813.
16. Idris A. et al. Torque Analysis of V-type Interior PMSM for Electric Vehicle Based on FEA Simulation. – 6th International Conference on Information Technology, Information Systems and Electrical Engineering, 2022, DOI: 10.1109/ICITISEE57756.2022.10057840.
17. Sohagh K.S. et al. Analysis of Id-Iq Strategy for Active Power Filter. – 15th IEEE Conference on Industrial Electronics and Applications, 2020, pp. 722–725, DOI: 10.1109/ICIEA48937.2020.9248335.
18. Degel W. et al. Scalable Slip Control with Torque Vectoring Including Input-to-State Stability Analysis. – IEEE Transactions on Control Systems Technology, 2023, vol. 31, No. 3, pp. 1250–1265, DOI: 10.1109/TCST.2022.3224839
Published
2025-04-24
Section
Article