Electrical Properties of Conductors Additively Manufactured from AlSi10Mg Aluminum Powder

  • Vyacheslav E. VAVILOV
  • Flyur R. ISMAGILOV
  • Aydar I. SHAYHLISLAMOV
  • Azat A. HUSAINOV
  • Il’ya P. KRASNIKOV
Keywords: electrical conductivity, conductors, aluminum powder, electrical machine, additive manufacturing, annealing

Abstract

Additive manufacturing technologies are actively developing worldwide. The prospects of using these technologies for making electrical machine windings are especially interesting. Additive manufacturing opens new possibilities for making windings with integrated cooling channels. As a result, it becomes possible to achieve a significantly higher current density and ensure efficient removal of releasing heat. Moreover, by using additive manufacturing, it is possible to make windings with a unique, optimized geometry that cannot be obtained in using conventional methods. The article presents an analysis of the electrical properties of additively manufactured AlSi10Mg conductors, as well as information about the equipment used in the process. Experimental results have shown that before annealing, the electrical characteristics, such as conductor resistance and resistivity, are significantly higher than their predicted values, and the electrical conductivity is lower than its expected value. However, after annealing, the values of these parameters reached 73% of those in pure aluminum, thereby pointing to a potential for further studies of additive manufacturing for making the windings. The results obtained are an important step in the development of additive manufacturing technologies and open new prospects for making next-generation electrical machines

Author Biographies

Vyacheslav E. VAVILOV

(Ufa University of Science and Technology, Ufa, Russia) – Head of the Electromechanics Dept., Director of AES “Motors of the future”, Dr. Sci. (Eng.), Docent

Flyur R. ISMAGILOV

(Ufa University of Science and Technology, Ufa, Russia) – Professor of the Electromechanics Dept., Deputy Science Director of AES “Motors of the future”, Dr. Sci. (Eng.), Professor

Aydar I. SHAYHLISLAMOV

(Ufa University of Science and Technology, Ufa, Russia) – Postgraduate Student, Head of the Technology Dept. of AES “Motors of the future”.

Azat A. HUSAINOV

(Ufa University of Science and Technology, Ufa, Russia) – Director of the Engineering Center of AES “Motors of the future”.

Il’ya P. KRASNIKOV

(Ufa University of Science and Technology, Ufa, Russia) – CNC Machining Section Foreman of AES “Motors of the future”.

References

1. Костыгова Т.В. Технология производства проводов. Пермь: Изд-во Пермского национального исследовательского политехнического университета, 2018, 155 с.
2. Wu F., El-Refaie A.M. Additively Manufactured Hollow Conductors with Integrated Cooling for High Specific Power Electrical Machines. – International Conference on Electrical Machines (ICEM), 2020, pp. 1497–1503, DOI: 10.1109/ICEM49940.2020.9270871.
3. Wu F., El-Refaie A.M., Al-Qarni A. Additively Manufactured Hollow Conductors Integrated with Heat Pipes: Design Tradeoffs and Hardware Demonstration. – IEEE Transactions on Industry Applications, 2021, vol. 57, No. 4, pp. 3632–3642, DOI: 10.1109/TIA. 2021.3076423.
4. Wu F., EL-Refaie A.M., Al-Qarni A. Minimization of Winding AC Losses Using Inhomogeneous Electrical Conductivity Enabled by Additive Manufacturing. – IEEE Transactions on Industry Applications, 2022, vol. 58, No. 3, pp. 3447–3458, DOI: 10.1109/ECCE 44975.2020.9235598.
5. Simpson N. et al. Direct Thermal Management of Windings Enabled by Additive Manufacturing. – IEEE Transactions on Industry Applications, 2022, vol. 59, No. 2, pp. 1319–1327, DOI: 10.1109/TIA. 2022.3209171.
6. Simpson N. et al. Additive Manufacturing of Shaped Profile Windings for Minimal AC Loss in Electrical Machines. – IEEE Transactions on Industry Applications, 2020, vol. 56, No. 3, pp. 2510–2519, DOI: 10.1109/ECCE.2018.8557999.
7. Selema A., Ibrahim M.N., Sergeant P. Additively Manufactured Ultralight Shaped-Profile Windings for HF Electrical Machines and Weight-Sensitive Applications. – IEEE Transactions on Transportation Electrification, 2022, vol. 8, No. 4, pp. 4313–4324, DOI: 10.1109/TTE. 2022.3173126.
8. Selema A., Ibrahim M.N., Sergeant P. Development of Novel Semi-Stranded Windings for High Speed Electrical Machines Enabled by Additive Manufacturing. – Applied Sciences, 2023, vol. 13, No. 3, DOI: 10.3390/app13031653.
9. Wohlers C. et al. Design and Direct Liquid Cooling of Tooth-Coil Windings. – Electrical Engineering, 2018, vol. 100, pp. 2299–2308, DOI: 10.1007/s00202-018-0704-x.
10. РУСАЛ [Электрон. ресурс], URL: https://rusal.ru (дата обращения 27.02.2025).
11. Vavilov V.E. et al. Improving the Processibility of Manufacturing Windings of Electrical Machines Using Additive Manufacturing Methods: Experience of Using A1Si10Mg and Carbon Nanotubes. – International Conference on Electrotechnical Complexes and Systems (ICOECS), 2021, pp. 636–641, DOI: 10.1109/ICOECS52783.2021.9657373.
12. Зайнагутдинова Э.И., Вавилов В.Е., Подгузов А.А. Изменение электрических характеристик аддитивных обмоток из алюминиевого порошка при добавлении углеродных нанотрубок. – Электротехника, 2022, № 12, с. 11–13.
13. Шайхлисламов А.И., Исмагилов Ф.Р. О возможности аддитивной печати обмоток электрических машин. – Электротехника, 2024, № 12, с. 54–57.
14. Шайхлисламов А.И., Исмагилов Ф.Р. Обзор аддитивных технологий и их применение при изготовлении обмоток электрических машин. – Всерос. научно-практ. конф. «Энергетика будущего», 2024, с. 187–197.
15. Лазерные системы [Электрон. ресурс], URL: https://www.lsystems.ru (дата обращения 27.02.2025).
---
Работа выполнена при финансовой поддержке Минобрнауки России (грант № 075-03-2023-119/9)
#
1. Kostygova T.V. Tekhnologiya proizvodstva provodov (Wire Manufacturing Technology). Perm’: Izd-vo Permskogo natsional’nogo issledovatel’skogo politehnicheskogo universiteta, 2018, 155 p.
2. Wu F., El-Refaie A.M. Additively Manufactured Hollow Conductors with Integrated Cooling for High Specific Power Electrical Machines. – International Conference on Electrical Machines (ICEM), 2020, pp. 1497–1503, DOI: 10.1109/ICEM49940.2020.9270871.
3. Wu F., El-Refaie A.M., Al-Qarni A. Additively Manufactured Hollow Conductors Integrated with Heat Pipes: Design Tradeoffs and Hardware Demonstration. – IEEE Transactions on Industry Applications, 2021, vol. 57, No. 4, pp. 3632–3642, DOI: 10.1109/TIA. 2021.3076423.
4. Wu F., EL-Refaie A.M., Al-Qarni A. Minimization of Winding AC Losses Using Inhomogeneous Electrical Conductivity Enabled by Additive Manufacturing. – IEEE Transactions on Industry Applications, 2022, vol. 58, No. 3, pp. 3447–3458, DOI: 10.1109/ECCE44975.2020.9235598.
5. Simpson N. et al. Direct Thermal Management of Windings Enabled by Additive Manufacturing. – IEEE Transactions on Industry Applications, 2022, vol. 59, No. 2, pp. 1319–1327, DOI: 10.1109/TIA. 2022.3209171.
6. Simpson N. et al. Additive Manufacturing of Shaped Profile Windings for Minimal AC Loss in Electrical Machines. – IEEE Transactions on Industry Applications, 2020, vol. 56, No. 3, pp. 2510–2519, DOI: 10.1109/ECCE.2018.8557999.
7. Selema A., Ibrahim M.N., Sergeant P. Additively Manufactu-red Ultralight Shaped-Profile Windings for HF Electrical Machines and Weight-Sensitive Applications. – IEEE Transactions on Transpor-tation Electrification, 2022, vol. 8, No. 4, pp. 4313–4324, DOI: 10.1109/TTE.2022.3173126.
8. Selema A., Ibrahim M.N., Sergeant P. Development of Novel Semi-Stranded Windings for High Speed Electrical Machines Enabled by Additive Manufacturing. – Applied Sciences, 2023, vol. 13, No. 3, DOI: 10.3390/app13031653.
9. Wohlers C. et al. Design and Direct Liquid Cooling of Tooth-Coil Windings. – Electrical Engineering, 2018, vol. 100, pp. 2299–2308, DOI: 10.1007/s00202-018-0704-x.
10. RUSAL [Electron. resource], URL: https://rusal.ru (Access on 27.02.2025).
11. Vavilov V.E. et al. Improving the Processibility of Manufacturing Windings of Electrical Machines Using Additive Manufacturing Methods: Experience of Using A1Si10Mg and Carbon Nanotubes. – International Conference on Electrotechnical Complexes and Systems (ICOECS), 2021, pp. 636–641, DOI: 10.1109/ICOECS52783.2021.9657373.
12. Zaynagutdinova E.I., Vavilov V.E., Podguzov A.A. Elektro-tekhnika – in Russ. (Electrical Engineering), 2022, No. 12, pp. 11–13.
13. Shayhlislamov A.I., Ismagilov F.R. Elektrotekhnika – in Russ. (Electrical Engineering), 2024, No. 12, pp. 54–57.
14. Shayhlislamov A.I., Ismagilov F.R. Vseros. nauchno-prakt. konf. «Energetika budushchego» – in Russ. (All-Russian Scientific and Practical Conference “Energy of the Future”), 2024, pp. 187–197.
15. Lazernye sistemy (Laser Systems) [Electron. resource], URL: https://www.lsystems.ru (Access on 27.02.2025)
---
This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-03-2023-119/9
Published
2025-04-24
Section
Article