Technological and Intelligent-Digital Innovations as the Basic Principles of Electric Power System Transformations
Abstract
The article provides a comprehensive analysis of technological and intelligent-digital innovations in the electric power systems in Russia and around the world. The electric power industry sectors (generation, storage and transmission of electricity, and control systems), modernization of existing equipment, and introduction of innovative technologies are considered. It is noted that large power generating sources, including conventional (nuclear, thermal, and hydroelectric power plants) and new ones (mainly based on renewable energy resources), and small-scale generation plants (microturbines, gas piston plants, small renewable energy sources, and others) are actively developed. The transition from conventional pumped storage power plants to new electricity storage technologies, including electrochemical and others, is underway. Energy storage facilities are used both in power systems and locally. In electrical networks, technological progress leads to the use of higher voltage levels and growth of transmission capacities, and to the construction of low-voltage microgrids (connecting consumers, small-scale generation and electricity storage installations), including DC ones. Active implementation of intelligent digital solutions in the electric power industry is underway, which entails the occurrence of numerous control entities. It is summarized that the mentioned innovative processes result in that the modern electric power systems are transformed into complex and efficient multi-subject cyberphysical power systems with a combined centralized and distributed structure and with an expanded energy resource base.
References
2. Лю Ч. Глобальное энергетическое объединение. М.: Изд-во МЭИ, 2016, 512 с.
3. Deane P., Brinkerink M. Connecting the Continents – A Global Power Grid. – IEEE Power and Energy Magazine, 2020, vol. 18, Nо. 2, pp. 121–127, DOI: 10.1109/MPE.2020.2974610.
4. Vadari M. The Future of Distribution Operations and Planning: The Electric Utility Environment Is Changing. – IEEE Power and Energy Magazine, 2020, vol. 18, No. 1, pp. 18–25, DOI: 10.1109/MPE.2019.2945344.
5. De León F. The Future Belongs to DC: Edison Will Beat Tesla After All. – IEEE Power and Energy Magazine, 2023, vol. 21, No. 2, pp. 78–80, DOI: 10.1109/MPE.2022.3231000.
6. Unlocking Smart Grid Opportunities in Emerging Markets and Developing Economies. International Energy Agency, 2024, 105 p.
7. Подковальников С.В., Чудинова Л.Ю., Михеев А.В. Доминирующие тенденции и процессы трансформации в мировой и российской электроэнергетике. – Энергетик, 2024, № 5, с. 9–21.
8. Хренников А.Ю. и др. Инновационное развитие энергетики в условиях новых вызовов. Новые быстроразвивающиеся технологии в электроэнергетике. – Энергия единой сети, 2024, № 2 (73), с. 26–39.
9. Могиленко А.В., Могиленко Е.А. Перспективные энергетические технологии и решения ранней стадии готовности, исследуемые за рубежом. – Энергетика за рубежом. Приложение к ж. «Энергетик», 2025, вып. 5, с. 2–32.
10. Подковальников С.В. Смена парадигмы управления электроэнергетическими системами. – Электричество, 2024, № 3, с. 4–15.
11. Ember’s Yearly Electricity Data [Электрон. ресурс], URL: https://ember-energy.org/data/yearly-electricity-data/ (дата обращения 10.07.2025).
12. Атлас инвестиций российско-китайского энергетического сотрудничества 2021 [Электрон. ресурс], URL: https://rcebf.com/atlas/ru/conventional-power-generation-industry/projects-reduce-emissions-prevent-aei.html (дата обращения 10.08.2024).
13. Газовые микротурбины: обзор российского рынка [Электрон. ресурс], URL: http://www.r-gaz.ru/article_gazovye-mikroturbiny-obzor.html (дата обращения 08.04.2025).
14. Обзор технологий атомной энергетики, 2021 [Электрон. ресурс], URL: https://unece.org/sites/default/files/2021-08/Nuclear%20brief_RU.pdf (дата обращения 08.04.2025).
15. Kim Y.C., Elimelech M. Potential of Osmotic Power Generation by Pressure Retarded Osmosis Using Seawater and River Water: Analysis and Experiments. – Journal of Membrane Science, 2013, vol. 429, pp. 330–337, DOI: 10.1016/j.memsci.2012.11.039.
16. Прорыв в капельной электрогенерации [Электрон. ресурс], URL: http://elektroportal.ru/news/science/46563 (дата обращения 07.04.2025).
17. Инновации в производстве солнечных панелей [Электрон. ресурс], URL: https://e-solarpower.ru/stati/innovacii-v-proizvodstve-solnechnyh-paneley-obzor-tehnologiy-i-materialov-v-proizvodstve-solnechnyh-paneley (дата обращения 24.08.2024).
18. Новые технологии развития солнечных панелей [Электрон. ресурс], URL: https://www.elec.ru/publications/alternativnaja-energetika/7212 (дата обращения 29.08.2024).
19. Самые большие солнечные электростанции [Электрон. ресурс], URL: https://nova-sun.ru/alternativnaya-energetika/krupnejshie-solnechnye-elektrostantsii (дата обращения 08.09.2024).
20. Cool Innovations in Wind Energy [Электрон. ресурс], URL: https://windcycle.energy/ wind-energy-innovations (дата обращения 06.12.2024).
21. Новые крышные ветрогенераторы эффективнее солнечных панелей [Электрон. ресурс], URL: https://4pda.to/2024/02/04/423713/novye_kryshnye_vetrogeneratory_okazalis_effektivnee_solnechnykh_panelej (дата обращения 23.09.2024).
22. Статкевич А.В., Тимофеев С.С., Шишлаков В.Ф. Современные ветроэнергетические установки: обзор и тенденции развития. – XXV Межд. науч. конф. «Волновая электроника и инфокоммуникационные системы», 2022, т. 1, с. 257–261.
23. Biomass Energy [Электрон. ресурс], URL: https://www.eia.gov/energyexplained/biomass (дата обращения 21.10.2024).
24. Biomass Energy [Электрон. ресурс], URL: https://education.nationalgeographic.org/resource/biomass-energy (дата обращения 26.10.2024).
25. Выработка энергии из температурного градиента воды [Электрон. ресурс], URL: https://mining-portal.ru/publish/vyirabotka-energii-iz-temperaturnogo-gradienta-vodyi (дата обращения 05.10.2024).
26. Ocean Energy Europe, 2024 [Электрон. ресурс], URL: https://www.oceanenergy-europe.eu (дата обращения 28.09.2024).
27. Инновационный сплав нитинол может помочь в борьбе с изменением климата [Электрон. ресурс], URL: https://ru.jjhyxs.com/blog/ innovation-nitinol-alloy-could-help-fight-climate-change.html (дата обращения 04.11.2024).
28. Системы накопления электрической энергии (СНЭЭ) [Электрон. ресурс], URL: https://www.elec.ru/search/?r=library&q=Системы+накопления+электрической+энергии+%28СНЭЭ%29 (дата обращения 27.09.2024).
29. Xing L. et al. Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation. – Applied Energy, 2015, No. 137, pp. 511–536, DOI: 10.1016/j.apenergy.2014.09.081.
30. Annual Grid-Scale Battery Storage Additions, 2017–2022. [Электрон. ресурс], URL: https://www.iea.org/data-and-statistics/charts/annual-grid-scale-battery-storage-additions-2017-2022 (дата обращения 10.11.2024).
31. Batteries and Secure Energy Transitions. Paris: International Energy Agency (IEA), 2023, 524 p.
32. АРТСНЭ [Электрон. ресурс], URL: https://eepir.ru/new/otkrytie-artsne-230124 (дата обращения 10.11.2024).
33. Прогноз развития энергетики мира и России. М.: ИНЭИ, 2024, 51 c.
34. Накопители энергии на сверхпроводниках могут совершить революцию в энергетике [Электрон. ресурс], URL: https://priority2030.mephi.ru/node/289 (дата обращения 11.11.2024).
35. Тепловой генератор на жидком олове [Электрон. ресурс], URL: https://hightech.plus/2023/12/14/teplovoi-generator-na-zhidkom-olove-na-poryadok-deshevle-litii-ionnih-akkumulyatorov (дата обращения 11.11.2024).
36. Zhang J. et al. Benefit Analysis of Long-Duration Energy Storage in Power Systems with High Renewable Energy Shares. – Frontiers in Energy Research, 2020, vol. 8, DOI: 10.3389/fenrg.2020.527910.
37. Indigenous High-Voltage Alternating Current Lines May Be Deployed to Boost Transmission Infrastructure [Электрон. ресурс], URL: https://economictimes.indiatimes.com/industry/energy/power/indigenous-high-voltage-alternating-current-lines-may-be-deployed-to-boost-transmission-infrastructure/articleshow/112355764.cms (дата обращения 15.07.2025).
38. Усовершенствованные проводники открывают путь для расширения сети [Электрон. ресурс], URL: https://nature.berkeley.edu/news/2024/09/advanced-conductors-provide-path-grid-expansion (дата обращения 08.04.2025).
39. Adapa R. Current Status of HVdc Technology [In My View]. – IEEE Power and Energy Magazine, 2025, vol. 23, No. 2, pp. 102–104, DOI: 10.1109/MPE.2024.3493796.
40. Филиппов С.П. Освоение ультравысокого напряжения – как основа для глобализации электроснабжения. – Энергетическая политика, 2019, № 2, с. 80–95.
41. Фрадкин В. Гибридные ЛЭП повысят мощность энергосетей [Электрон. ресурс], URL: https://www.dw.com/ru (дата обращения 03.04.2025).
42. Jovcic D., Tang G., Pang H. Adopting Circuit Breakers for High-Voltage dc Networks: Appropriating the Vast Advantages of dc Transmission Grids. – IEEE Power and Energy Magazine, 2019, vol. 17, No. 3, pp. 82–93, DOI: 10.1109/MPE.2019.2897408.
43. Barnes M. et al. HVDC Circuit Breakers – A Review. – IEEE Access, 2020, vol. 8, DOI: 10.1109/ACCESS.2020.3039921.
44. Мейлихов Е.З. Структурные особенности ВТСП-керамик и их критический ток, и вольтамперная характеристика. – Успехи физических наук, 1993, т. 163, № 3, с. 27–54.
45. Применение гибких систем передачи переменного тока [Электрон. ресурс], URL: http://www.stroyenergo-group.ru/produkciya/vniir/gibkie_sistemy_peredachi_peremennogo_toka (дата обращения 03.04.2025).
46. Kamwa I. High-Voltage DC and FACTSs: Trusted Grid-Enhancing Technologies [Editor’s Voice]. – IEEE Power and Energy Magazine, 2025, vol. 23, No. 2, pp. 4–14, DOI: 10.1109/MPE.2025.3533240.
47. Высоковольтные линии постоянного тока [Электрон. ресурс], URL: https://library.e.abb.com/public/79b6ab0933720069c12570cf004d08f6/p42-46.pdf (дата обращения 03.04.2025).
48. Димитров Г.Л. Беспроводная передача информации и энергии на основе микроволн. – Научный журнал, 2017, т. 22, № 9, с. 11–27.
49. Текслер А.Л. Цифровизация энергетики: от автоматизации процессов к цифровой трансформации отрасли. – Энергетическая политика, 2018, № 5, с. 3–6.
50. Атаева Г.И., Муродова Г.Б. Значение «умных» сетей. – Universum: технические науки, 2022, т. 96, № 3, с. 13–15.
51. Kreikebaum F. et al. Smart Wires – A Distributed Low-Cost Solution for Controlling Power Flows and Monitoring Transmission Lines. – IEEE PES ISGT Europe, 2010, DOI: 10.1109/ISGTEUROPE.2010.5638853.
52. Маторин С.И., Гуль С.В. Информационно-аналитическая технология будущего – Интернет вещей (IoT). – Научный результат. Информационные технологии, 2023, № 4, с. 78–86.
53. Утегенов Н.Б. Интернет вещей (IoT) и информационные системы. – Universum: технические науки, 2023, т. 112, № 7-1, с. 30–34.
54. Kazancı B.A. The Strategic Importance of Cyber Security in Electric Energy Policies International Journal of Energy Economics and Policy, 2024, vol. 14, No. 14, pp. 599–605, DOI: 10.32479 /ijeep.16244.
55. Di Silvestre M.L. et all. Blockchain for Power Systems: Current Trends and Future Applications. – Renewable and Sustainable Energy Reviews, 2020, vol. 119, DOI: 10.1016/j.rser.2019.109585.
56. Saha T. et al. A Review on Energy Management of Community Microgrid with the Use of Adaptable Renewable Energy Sources. – International Journal of Robotics and Control Systems, 2023, vol. 3, No. 4, pp. 824–838; DOI: 10.31763/ijrcs.v3i4.1009.
57. Gitelman L., Kozhevnikov M. New Business Models in the Energy Sector in the Context of Revolutionary Transformations. – Sustainability, 2023, vol. 15, No. 4, DOI: 10.3390/su15043604.
58. Asham Y., Bakr M.H., Emadi A. Applications of Augmented and Virtual Reality in Electrical Engineering Education: A Review. – IEEE Access, 2023, vol. 11, DOI: 10.1109/ACCESS.2023.3337394.
59. Rajora G.L. et al. A Review of Asset Management Using Artificial Intelligence Based Machine Learning Models with Applications for the Electric Power and Energy System, 2024, DOI: 10.22541/au.171753166.67934665/v1.
60. Ausmus J. et al. Big Data Analytics and the Electric Utility Industry. – Int. Conf. on SGSMA, 2019, vol. 2, No. 4, pp. 392–403, DOI: 10.1109/SGSMA.2019.8784657.
61. Arefifar S.A., Alam S., Hamadi A. A Review on Self-Healing in Modern Power Distribution Systems. – Journal of Modern Power Systems and Clean Energy, 2023, vol. 1, No. 4, pp. 1719–1799, DOI: 10.35833/MPCE.2022.000032.
---
Работа выполнена в рамках Проектов государственного задания № FWEU-2021-0001 рег. № АААА-А21-121012190027-4 и № FWEU-2021-0005 рег. № АААА-А21-121012190004-5 Программы фундаментальных исследований РФ на 2021–2030 гг
#
1. Lambert F. IEEE Power and Energy Magazine, 2020, vol. 18, No. 1, pp. 8–12, DOI: 10.1109/MPE.2019.2945346.
2. Lyu Ch. Global’noe energeticheskoe obedinenie (Global Energy Association). M.: Izd-vo MEI, 2016, 512 p.
3. Deane P., Brinkerink M. IEEE Power and Energy Magazine, 2020, vol. 18, No. 2, pp. 121–127, DOI: 10.1109/MPE.2020.2974610.
4. Vadari M. The Future of Distribution Operations and Planning: The Electric Utility Environment Is Changing. – IEEE Power and Energy Magazine, 2020, vol. 18, No. 1, pp. 18–25, DOI: 10.1109/MPE.2019.2945344.
5. De León F. The Future Belongs to DC: Edison Will Beat Tesla After All. – IEEE Power and Energy Magazine, 2023, vol. 21, No. 2, pp. 78–80, DOI: 10.1109/MPE.2022.3231000.
6. Unlocking Smart Grid Opportunities in Emerging Markets and Developing Economies. International Energy Agency, 2024, 105 p.
7. Podkoval’nikov S.V., Chudinova L.Yu., Miheev A.V. Energetik – in Russ. (Power Engineer), 2024, No. 5, pp. 9–21.
8. Hrennikov A.Yu. et al. Energiya edinoy seti – in Russ. (Energy of Unified Grid), 2024, No. 2 (73), pp. 26–39.
9. Mogilenko A.V., Mogilenko E.A. Energetika za rubezhom. Prilozhenie k zh. «Energetik» – in Russ. (Energy Abroad. Appendix to the Power Engineer J.), 2025, iss. 5, pp. 2–32.
10. Podkoval’nikov S.V. Elektrichestvo – in Russ. (Electricity), 2024, No. 3, pp. 4–15.
11. Ember’s Yearly Electricity Data [Electron. resource], URL: https://ember-energy.org/data/yearly-electricity-data/ (Access on 10.07.2025).
12. Atlas investitsiy rossiysko-kitayskogo energeticheskogo so-trudnichestva 2021 (Investment Atlas of Russian-Chinese Energy Cooperation 2021) [Electron. resource], URL: https://rcebf.com/atlas/ru/conventional-power-generation-industry/projects-reduce-emissions-prevent-aei.html (Access on 10.08.2024).
13. Gazovye mikroturbiny: obzor rossiyskogo rynka (Gas Microturbines: Russian Market Overview) [Electron. resource], URL: http://www.r-gaz.ru/article_gazovye-mikroturbiny-obzor.html (Access on 08.04.2025).
14. Obzor tekhnologiy atomnoy energetiki (Review of Nuclear Energy Technologies), 2021 [Electron. resource], URL: https://unece.org/sites/default/files/2021-08/Nuclear%20brief_RU.pdf (Access on 08.04.2025).
15. Kim Y.C., Elimelech M. Potential of Osmotic Power Generation by Pressure Retarded Osmosis Using Seawater and River Water: Analysis and Experiments. – Journal of Membrane Science, 2013, vol. 429, pp. 330–337, DOI: 10.1016/j.memsci.2012.11.039.
16. Proryv v kapel’noy elektrogeneratsii (Breakthrough in Drip Power Generation) [Electron. resource], URL: http://elektroportal.ru/news/science/46563 (Access on 07.04.2025).
17. Innovatsii v proizvodstve solnechnyh paneley (Innovations in the Production of Solar Panels) [Electron. resource], URL: https://e-solarpower.ru/stati/innovacii-v-proizvodstve-solnechnyh-paneley-obzor-tehnologiy-i-materialov-v-proizvodstve-solnechnyh-paneley (Access on 24.08.2024).
18. Novye tekhnologii razvitiya solnechnyh paneley (New Technologies for the Development of Solar Panels) [Electron. resource], URL: https://www.elec.ru/publications/alternativnaja-energetika/7212 (Access on 29.08.2024).
19. Samye bol’shie solnechnye elektrostantsii (The Largest Solar Power Plants) [Electron. resource], URL: https://nova-sun.ru/alternativnaya-energetika/krupnejshie-solnechnye-elektrostantsii (Access on 08.09.2024).
20. Cool Innovations in Wind Energy [Electron. resource], URL: https://windcycle.energy/ wind-energy-innovations (Access on 06.12.2024).
21. Novye kryshnye vetrogeneratory (New Rooftop Wind Turbines) [Electron. resource], URL: https://4pda.to/2024/02/04/423713/novye_kryshnye_vetrogeneratory_okazalis_effektivnee_solnechnykh_panelej (Access on 23.09.2024).
22. Statkevich A.V., Timofeev S.S., Shishlakov V.F. XXV Mezhd. Nauch. konf. «Volnovaya elektronika i infokommunikatsionnye sistemy» – in Russ. (XXV Int. Sci. Conf. «Wave Electronics and Infocommunication Systems»), 2022, vol. 1, pp. 257–261.
23. Biomass Energy [Electron. resource], URL: https://www.eia.gov/energyexplained/biomass (Access on 21.10.2024).
24. Biomass Energy [Electron. resource], URL: https://education.nationalgeographic.org/resource/biomass-energy(Access on 26.10.2024).
25. Vyrabotka energii iz temperaturnogo gradienta vody (Energy Generation from the Temperature Gradient of Water) [Electron. resource], URL: https://mining-portal.ru/publish/vyirabotka-energii-iz-temperaturnogo-gradienta-vodyi (Access on 05.10.2024).
26. Ocean Energy Europe, 2024 [Electron. resource], URL: https://www.oceanenergy-europe.eu (Access on 28.09.2024).
27. Innovatsionnyy splav nitinol mozhet pomoch’ v bor’be s izmeneniem klimata (Innovative Nitinol Alloy Can Help Fight Climate Change) [Electron. resource], URL: https://ru.jjhyxs.com/blog/ innovation-nitinol-alloy-could-help-fight-climate-change.html (Access on 04.11.2024).
28. Sistemy nakopleniya elektricheskoy energii (SNEE) (Electric Energy Storage Systems (EESS)) [Electron. resource], URL: https://www.elec.ru/search/?r=library&q=Системы+накопления+электрической+энергии+%28СНЭЭ%29 (Access on 27.09.2024).
29. Xing L. et al. Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation. – Applied Energy, 2015, No. 137, pp. 511–536, DOI: 10.1016/j.apenergy.2014.09.081.
30. Annual Grid-Scale Battery Storage Additions, 2017–2022. [Electron. resource], URL: https://www.iea.org/data-and-statistics/charts/annual-grid-scale-battery-storage-additions-2017-2022 (Access on 10.11.2024).
31. Batteries and Secure Energy Transitions. Paris: International Energy Agency (IEA), 2023, 524 p.
32. ARTSNE (ARTSNE) [Electron. resource], URL: https://eepir.ru/new/otkrytie-artsne-230124 (Access on 10.11.2024).
33. Prognoz razvitiya energetiki mira i Rossii (World and Russian Energy Development Forecast). M.: INEI, 2024, 51 c.
34. Nakopiteli energii na sverhprovodnikah mogut sovershit’ revolyutsiyu v energetike (Energy Storage Devices Based on Superconductors Can Revolutionize the Energy Industry) [Electron. resource], URL: https://priority2030.mephi.ru/node/289 (Access on 11.11.2024).
35. Teplovoy generator na zhidkom olove (A Thermal Generator Powered by Liquid Tin) [Electron. resource], URL: https://hightech.plus/2023/12/14/teplovoi-generator-na-zhidkom-olove-na-poryadok-deshevle-litii-ionnih-akkumulyatorov (Access on 11.11.2024).
36. Zhang J. et al. Benefit Analysis of Long-Duration Energy Stora-ge in Power Systems with High Renewable Energy Shares. – Frontiers in Energy Research, 2020, vol. 8, DOI: 10.3389/fenrg.2020.527910.
37. Indigenous High-Voltage Alternating Current Lines May Be Deployed to Boost Transmission Infrastructure [Electron. resource], URL: https://economictimes.indiatimes.com/industry/energy/power/indigenous-high-voltage-alternating-current-lines-may-be-deployed-to-boost-transmission-infrastructure/articleshow/112355764.cms (Access on 15.07.2025).
38. Usovershenstvovannye provodniki otkryvayut put’ dlya ras-shireniya seti (Improved Conductors Pave the Way for Network Expansion) [Electron. resource], URL: https://nature.berkeley.edu/news/2024/09/advanced-conductors-provide-path-grid-expansion (Access on 08.04.2025).
39. Adapa R. Current Status of HVdc Technology [In My View]. – IEEE Power and Energy Magazine, 2025, vol. 23, No. 2, pp. 102–104, DOI: 10.1109/MPE.2024.3493796.
40. Filippov S.P. Energeticheskaya politika – in Russ. (Energy Policy), 2019, No. 2, pp. 80–95.
41. Fradkin V. Gibridnye LEP povysyat moshchnost’ energosetey (Hybrid Power Lines Will Increase the Power Grid Capacity) [Electron. resource], URL: https://www.dw.com/ru (Access on 03.04.2025).
42. Jovcic D., Tang G., Pang H. Adopting Circuit Breakers for High-Voltage dc Networks: Appropriating the Vast Advantages of dc Transmission Grids. – IEEE Power and Energy Magazine, 2019, vol. 17, No. 3, pp. 82–93, DOI: 10.1109/MPE.2019.2897408.
43. Barnes M. et al. HVDC Circuit Breakers – A Review. – IEEE Access, 2020, vol. 8, DOI: 10.1109/ACCESS.2020.3039921.
44. Meylihov E.Z. Uspekhi fizicheskih nauk – in Russ. (Achieve-ments of Physical Sciences), 1993, vol. 163, No. 3, pp. 27–54.
45. Primenenie gibkih sistem peredachi peremennogo toka (Application of Flexible AC Transmission Systems) [Electron. resource], URL: http://www.stroyenergo-group.ru/produkciya/vniir/gibkie_sistemy_peredachi_peremennogo_toka (Access on 03.04.2025).
46. Kamwa I. High-Voltage DC and FACTSs: Trusted Grid-Enhancing Technologies [Editor’s Voice]. – IEEE Power and Energy Magazine, 2025, vol. 23, No. 2, pp. 4–14, DOI: 10.1109/MPE.2025.3533240.
47. Vysokovol’tnye linii postoyannogo toka (High-Voltage Direct Current Lines) [Electron. resource], URL: https://library.e.abb.com/public/79b6ab0933720069c12570cf004d08f6/p42-46.pdf (Access on 03.04.2025).
48. Dimitrov G.L. Nauchnyy zhurnal – in Russ. (Scientific Jour-nal), 2017, vol. 22, No. 9, pp. 11–27.
49. Teksler A.L. Energeticheskaya politika – in Russ. (Energy Policy), 2018, No. 5, pp. 3–6.
50. Ataeva G.I., Murodova G.B. Universum: tekhnicheskie nau-ki – in Russ. (Universum: Technical Sciences), 2022, vol. 96, No. 3, pp. 13–15.
51. Kreikebaum F. et al. Smart Wires – A Distributed Low-Cost Solution for Controlling Power Flows and Monitoring Trans-mission Lines. – IEEE PES ISGT Europe, 2010, DOI: 10.1109/ISGTEUROPE.2010.5638853.
52. Matorin S.I., Gul’ S.V. Nauchnyy rezul’tat. Informatsionnye tekhnologii – in Russ. (Research Result. Information Technologies), 2023, No. 4, pp. 78–86.
53. Utegenov N.B. Universum: tekhnicheskie nauki – in Russ. (Universum: Technical Sciences), 2023, vol. 112, No. 7-1, pp. 30–34.
54. Kazancı B.A. The Strategic Importance of Cyber Security in Electric Energy Policies International Journal of Energy Economics and Policy, 2024, vol. 14, No. 14, pp. 599–605, DOI: 10.32479 /ijeep.16244.
55. Di Silvestre M.L. et al. Blockchain for Power Systems: Current Trends and Future Applications. – Renewable and Sustainable Energy Reviews, 2020, vol. 119, DOI: 10.1016/j.rser.2019.109585.
56. Saha T. et al. A Review on Energy Management of Community Microgrid with the Use of Adaptable Renewable Energy Sources. – International Journal of Robotics and Control Systems, 2023, vol. 3, No. 4, pp. 824–838; DOI: 10.31763/ijrcs.v3i4.1009.
57. Gitelman L., Kozhevnikov M. New Business Models in the Energy Sector in the Context of Revolutionary Transformations. – Sustainability, 2023, vol. 15, No. 4, DOI: 10.3390/su15043604.
58. Asham Y., Bakr M.H., Emadi A. Applications of Augmented and Virtual Reality in Electrical Engineering Education: A Review. – IEEE Access, 2023, vol. 11, DOI: 10.1109/ACCESS.2023.3337394.
59. Rajora G.L. et al. A Review of Asset Management Using Artificial Intelligence Based Machine Learning Models with Applications for the Electric Power and Energy System, 2024, DOI: 10.22541/au.171753166.67934665/v1.
60. Ausmus J. et al. Big Data Analytics and the Electric Utility Industry. – Int. Conf. on SGSMA, 2019, vol. 2, No. 4, pp. 392–403, DOI: 10.1109/SGSMA.2019.8784657.
61. Arefifar S.A., Alam S., Hamadi A. A Review on Self-Healing in Modern Power Distribution Systems. – Journal of Modern Power Systems and Clean Energy, 2023, vol. 1, No. 4, pp. 1719–1799, DOI: 10.35833/MPCE.2022.000032
---
The work was carried out within the framework of the Projects of the state assignment no. FWEU-2021-0001 reg. No. AAAAA-A21-121012190027-4 and No. FWEU-2021-0005 reg. No. AAAAA-A21-121012190004-5 of the Fundamental Research Program of the Russian Federation for 2021–2030