Balancing the Normal Mode in Four-Wire Three-Phase Extra-High Voltage Lines
Abstract
Conventional single-circuit extra-high voltage AC power lines, widely used all over the world, feature an essential drawback: in the case of sustained single-phase faults, which are most likely to occur on such line, the latter is disconnected completely. The article considers a four-wire three-phase line, one phase of which is implemented as two half-phases. In emergency operation modes, any of the half-phases is used as a backup phase, and in the middle part of the other phases, series compensation devices are connected for balancing the operation mode and increasing the transmission capacity. The four-wire three-phase line features increased reliability owing to the fact that in the post-emergency it can shifted to operate with the possibility to transfer at least 50% of the initial maximum power in case of sustained faults. Series compensation devices that eliminate series imbalance can be installed not only in the middle part of the line, but also at its ends. Controlled shunt reactors, which reduce transverse imbalance, are placed at the ends of the semi-phases. The task of balancing the normal mode is to determine the parameters of the balancing devices, i.e., series compensation devices and controlled shunt reactors, depending on the length of the four-wire three-phase line and its design features. An algorithm has been developed, using which one can find the parameters of balancing devices that will keep the imbalance degree within acceptable limits. In application to a four-wire three-phase 500 kV line of a given design, simple relations are proposed for calculating the parameters of the balancing elements depending on the line length.
References
2. Электрические сети сверх- и ультравысокого напряжения ЕЭС России. Теоретические и практические основы. Т. 1: Электропередачи переменного тока / под ред. А.Ф. Дьякова. М.: НТФ Энергопрогресс, 2012, 696 с.
3. Arrillaga J., Liu Y.H., Watson N.R. Flexible Power Transmission. The HVDC Options. John Wiley & Sons, 2007, 377 p.
4. Tian X. et al. Review of the Configuration and Transient Stability of Large-Scale Renewable Energy Generation Through Hybrid DC Transmission. – CES Transactions on Electrical Machines and Systems, 2024, vol. 8, No. 2, pp. 115–126, DOI: 10.30941/CESTEMS.2024.00027.
5. Gomis-Bellmunt O. et al. Flexible Converters for Meshed HVDC Grids: From Flexible AC Transmission Systems (FACTS) to Flexible DC Grids. – IEEE Transactions on Power Delivery, 2020, vol. 35, No. 1, pp. 2–15, DOI: 10.1109/TPWRD.2019.2939588.
6. Chen Q. et al. Techno-Economic Performance Evaluation of Medium-Low Voltage DC Distribution System. – 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 2020, DOI: 10.1109/ASEMD49065.2020.9276158.
7. Красильникова Т.Г., Махмудов К.А., Новиков Н.Л. Инновационная линия СВН и ее основные показатели. – Методические вопросы исследования надежности больших систем энергетики, 2022, вып. 73, с. 143–152.
8. Пат. RU 2765656 C1. Одноцепная линия электропередачи высокого или сверхвысокого напряжения / Г.И. Самородов, Т.Г. Красильникова, 2022.
9. Самородов Г.И. и др. Одноцепная линия сверхвысокого напряжения повышенной пропускной способности. – Электричество, 2022, № 8, с. 40–48.
10. Дмитриев М.В. и др. Управляемые подмагничиванием шунтирующие реакторы / под ред. Г.А. Евдокунина. СПб.: Родная Ладога, 2013, 280 с.
11. Скидан А.А. и др. Применение управляемого подмагничиванием шунтирующего реактора в гибких электрических системах. – Энергетические установки и технологии, 2022, т. 8, № 2, с. 29–34.
12. Гашимов А.М., Гулиев Г.Б., Бабаева А.Р. Исследование режимов функционирования управляемых шунтирующих реакторов в электрических сетях напряжением 330 кВ и выше. –Электричество, 2024, № 11, с. 9–19.
13. Костенко М.В., Перельман Л.С., Шкарин Ю.П. Волновые процессы и электрические помехи в многопроводных линиях высокого напряжения. М.: Энергия, 1973, 272 с.
14. Мельников Н.А., Рокотян С.С., Шеренцис А.Н. Проектирование электрической части воздушных линий электропередачи 330−500 кВ. М.: Энергия, 1974, 472 с.
15. Правила устройства электроустановок. Седьмое издание. М.: Изд-во НЦ ЭНАС, 2003.
#
1. Zhou H. et al. The China Southern Power Grid: Solutions to Operation Risks and Planning Challenges. – IEEE Power and Energy Magazine, 2016, vol. 14, No. 4, pp. 72–78, DOI: 10.1109/MPE.2016.2547283.
2. Elektricheskie seti sverh- i ul’travysokogo napryazheniya EES Rossii. Teoreticheskie i prakticheskie osnovy. Tom 1: Elektroperedachi peremennogo toka (Ultra- and Ultra-High Voltage Electric Grids of the UES of Russia. Theoretical and Practical Foundations. Volume 1: AC Power Transmission) / Ed. by A.F. D’yakov. M.: NTF Energoprogress, 2012, 696 p.
3. Arrillaga J., Liu Y.H., Watson N.R. Flexible Power Transmission. The HVDC Options. John Wiley & Sons, 2007, 377 p.
4. Tian X. et al. Review of the Configuration and Transient Stability of Large-Scale Renewable Energy Generation Through Hybrid DC Transmission. – CES Transactions on Electrical Machines and Systems, 2024, vol. 8, No. 2, pp. 115–126, DOI: 10.30941/CESTEMS.2024.00027.
5. Gomis-Bellmunt O. et al. Flexible Converters for Meshed HVDC Grids: From Flexible AC Transmission Systems (FACTS) to Flexible DC Grids. – IEEE Transactions on Power Delivery, 2020, vol. 35, No. 1, pp. 2–15, DOI: 10.1109/TPWRD.2019.2939588.
6. Chen Q. et al. Techno-Economic Performance Evaluation of Medium-Low Voltage DC Distribution System. – 2020 IEEE Interna-tional Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 2020, DOI: 10.1109/ASEMD49065.2020.9276158.
7. Krasil’nikova T.G., Mahmudov K.A., Novikov N.L. Metodicheskie voprosy issledovaniya nadezhnosti bol’shih sistem energetiki – in Russ. (Methodological Issues of Reliability Research of Large Energy System), 2022, iss. 73, pp. 143–152.
8. Pat. RU 2765656 C1. Odnotsepnaya liniya elektroperedachi vysokogo ili sverhvysokogo napryazheniya (Single-Circuit High or Ultra-High Voltage Power Transmission Line) / G.I. Samorodov, T.G. Krasil’nikova, 2022.
9. Samorodov G.I. et al. Elektrichestvo – in Russ. (Electricity), 2022, No. 8, pp. 40–48.
10. Dmitriev M.V. et al. Upravlyaemye podmagnichivaniem shuntiruyushchie reaktory (Magnetization-Controlled Shunt Reactors) / Ed. by G.A. Evdokunin. SPb.: Rodnaya Ladoga, 2013, 280 p.
11. Skidan A.A. et al. Energeticheskie ustanovki i tehnologii – in Russ. (Energy Installations and Technologies), 2022, vol. 8, No. 2, pp. 29–34.
12. Gashimov A.M., Guliev G.B., Babaeva A.R. Elektrichestvo – in Russ. (Electricity), 2024, No. 11, pp. 9–19.
13. Kostenko M.V., Perel’man L.S., Shkarin Yu.P. Volnovye protsessy i elektricheskie pomehi v mnogoprovodnyh liniyah vysokogo napryazheniya (Wave Processes and Electrical Interference in Multi-Wire High Voltage Lines). M.: Energiya, 1973, 272 p.
14. Mel’nikov N.A., Rokotyan S.S., Sherentsis A.N. Proektirovanie elektricheskoy chasti vozdushnyh liniy elektroperedachi 330−500 kV (Design of the Electrical Part of 330–500 KV Overhead Power Lines). M.: Energiya, 1974, 472 p.
15. Pravila ustroystva elektroustanovok. Sed’moe izdanie (Rules of the Device of Electrical Installations. Seventh Edition). M.: Izd-vo NTS ENAS, 2003