Areas of Functional States in Managing Electrical Engineering Systems

  • Aleksandr V. SAUSHEV
  • Nikolay V. SHIROKOV

Abstract

The article presents a morphological analysis of the technical states of electrical engineering systems Based on this analysis, the areas of functional states are introduced, information about which is used to solve problems concerned with managing the state of electrical engineering systems. It is shown that there is lack of clear understanding of the most important concepts related to the “state” category in the literature. The parameters of electrical engineering systems are considered. A classification of the types of states is given, which is based on the standards currently in force. The areas of functional states are introduced for solving parametric and structural control problems aimed at ensuring the operability and survivability of electrical engineering systems. An analytical description of the operability and serviceable operation areas is obtained, which is based on applying the theory of logical R-functions, and which is invariant to the shape of the area and the dimension of the problem. Using particular examples, the application of the analytical description of the functional state areas is considered to solve the parametric and structural synthesis problems. With such an approach, the structural synthesis problem is reduced to preventive management of a ship's electric power system components that ensures survivability of the power installation and the ship as a whole.

Author Biographies

Aleksandr V. SAUSHEV

(Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg, Russia) – Head of the Electric Drive and Electrical Equipment of Coastal Installations Dept., Dr. Sci. (Eng.), Docent.

Nikolay V. SHIROKOV

(Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg, Russia) – Docent of the Electric Drive and Electrical Equipment of Coastal Installations Dept., Cand. Sci. (Eng.), Docent.

References

1. Саушев А.В., Широков Н.В. Методы, модели и алгоритмы предупредительного управления состоянием автономных электроэнергетических систем. СПб.: Изд-во ГУМРФ им. адм. С.О. Макарова, 2023, 212 с.
2. Saleh S., Chowdhury A.M., Survivability M.R. Analysis of Impacts of Load-Side Activities on Power Systems. – IEEE Transactions on Industry Applications, 2022, vol. 58, No. 2, pp. 1869–1878, DOI: 10.1109/TIA.2022.3146102.
3. Ataseven K., Yılmaz H. On the Assessment of Survivability of Surface Combatants. – Journal of Naval Sciences and Engineering, 2019, vol. 15, No. 1, pp. 63–85.
4. Pirmatov N. et al. Improving the Efficiency and Survivability of Synchronous Machines with Biaxial Excitation During Operation in Transient Processes. – AIP Conference Proceedings, 2024, vol. 3152, No. 1, DOI: 10.1063/5.0218824.
5. Afzal S. et al. State‐of‐the‐Art Review on Power System Resilience and Assessment Techniques. – IET Generation, Transmission & Distribution, 2020, vol. 14, No. 25, pp. 6107–6121, DOI: 10.1049/iet-gtd.2020.0531.
6. Rosales-Asensio E. et al. Resilience Framework, Methods, and Metrics for the Prioritization of Critical Electrical Grid Customers. – Electronics, 2022, vol. 11, No. 14, DOI: 10.3390/electronics11142246.
7. Paul S. et al. Resilience Assessment and Planning in Power Distribution Systems: Past and Future Considerations. – Renewable and Sustainable Energy Reviews, 2024, vol. 189, DOI: 10.1016/j.rser.2023.113991.
8. Назарычев А.Н., Пугачев А.А., Андреев Д.А. Риск-ориентированное управление эксплуатацией электрооборудования с учетом его технического состояния. – Электроэнергия. Передача и распределение, 2020, № 6 (63), с. 134–135.
9. Федоров М.П. и др. Задачи управления техническим состоянием оборудования АЭС – Научно-технические ведомости СПбПУ. Естественные и инженерные науки, 2019, т. 25, № 4, с. 23–30.
10. Саушев А.В. Области работоспособности электротехнических систем. СПб.: Политехника, 2013, 412 с.
11. Воронин В.В. Систематизация и формализация базовых понятий технической диагностики. – Информатика и системы управления, 2024, № 1 (79), с. 60–71.
12. Абрамов О.В. Дестабилизирующие факторы и случайные процессы изменения параметров технических устройств и систем. – Надежность и качество сложных систем, 2024, № 1, с. 13–20.
13. Saushev A., Shirokov N., Kuznetsov S. Preventive Protection of Ship's Electric Power System from Reverse Power. – International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019, 2021, рp. 388–398. DOI: 10.1007/978-3-030-57450-5_33.
14. Anam M. I., Nguyen T. T., Vu T. Risk-Based Preventive Energy Management for Resilient Microgrids. – International Journal of Electrical Power & Energy Systems, 2023, vol. 154, DOI: 10.2139/ssrn.4245626.
15. Göksu B., Şakar C., Yüksel O. A Probabilistic Assessment of Ship Blackout Incident with Fault Tree Analysis into (FTA) Bayesian Network (BN) – Journal of Marine Engineering & Technology, 2024, vol. 24, No. 1, pp. 54–69, DOI: 10.1080/20464177.2024.2423425.
16. Ibrion M., Paltrinieri N., Nejad A.R. Learning from Failures in Cruise Ship Industry: The Blackout of Viking Sky in Hustadvika, Norway. – Engineering Failure Analysis, 2021, vol. 125, DOI: 10.1016/j.engfailanal.2021.105355.
17. Im J., Rho B., Lee S. Empirical Case Study of Black-Out Incident Caused by Incomplete Combustion and Blow-by in Ship Generator Engines. – Journal of Advanced Marine Engineering and Technology (JAMET), 2024, vol. 48, No. 4, pp. 186–197.
#
1. Saushev A.V., Shirokov N.V. Metody, modeli i algoritmy pre-dupreditel’nogo upravleniya sostoyaniem avtonomnyh elektroener-geticheskih sistem (Methods, Models and Algorithms of Preventive Management of the State of Autonomous Electric Power Systems). SPb.: Izd-vo GUMRF im. adm. S. O. Makarova, 2023, 212 p.
2. Saleh S., Chowdhury A.M., Survivability M.R. Analysis of Impacts of Load-Side Activities on Power Systems. – IEEE Transactions on Industry Applications, 2022, vol. 58, No. 2, pp. 1869–1878, DOI: 10.1109/TIA.2022.3146102.
3. Ataseven K., Yılmaz H. On the Assessment of Survivability of Surface Combatants. – Journal of Naval Sciences and Engineering, 2019, vol. 15, No. 1, pp. 63–85.
4. Pirmatov N. et al. Improving the Efficiency and Survivability of Synchronous Machines with Biaxial Excitation During Operation in Transient Processes. – AIP Conference Proceedings, 2024, vol. 3152, No. 1, DOI: 10.1063/5.0218824.
5. Afzal S. et al. State‐of‐the‐Art Review on Power System Resilience and Assessment Techniques. – IET Generation, Transmission & Distribution, 2020, vol. 14, No. 25, pp. 6107–6121, DOI: 10.1049/iet-gtd.2020.0531.
6. Rosales-Asensio E. et al. Resilience Framework, Methods, and Metrics for the Prioritization of Critical Electrical Grid Customers. – Electronics, 2022, vol. 11, No. 14, DOI: 10.3390/electronics11142246.
7. Paul S. et al. Resilience Assessment and Planning in Power Distribu-tion Systems: Past and Future Considerations. – Renewable and Sustainab-le Energy Reviews, 2024, vol. 189, DOI: 10.1016/j.rser.2023.113991.
8. Nazarychev A.N., Pugachev A.A., Andreev D.A. Elektro-energiya. Peredacha i raspredelenie – in Russ. (Electricity. Transmission and Distribution), 2020, No. 6 (63), pp. 134–135.
9. Fedorov M.P. et al. Nauchno-tehnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki – in Russ. (Scientific and Technical Bulletins of SPbPU. Natural and Engineering Sciences), 2019, vol. 25, No. 4, pp. 23–30.
10. Saushev A.V. Oblasti rabotosposobnosti elektrotehnicheskih sistem (Areas of Operability of Electrical Systems). SPb.: Politehnika, 2013, 412 p.
11. Voronin V.V. Informatika i sistemy upravleniya – in Russ. (Computer Science and Management Systems), 2024, No. 1 (79), pp. 60–71.
12. Abramov O.V. Nadezhnost’ i kachestvo slozhnyh sistem – in Russ. (Reliability and Quality of Complex Systems), 2024, No. 1, pp. 13–20.
13. Saushev A., Shirokov N., Kuznetsov S. Preventive Protection of Ship's Electric Power System from Reverse Power. – International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019, 2021, Pp. 388–398. DOI: 10.1007/978-3-030-57450-5_33.
14. Anam M.I., Nguyen T.T., Vu T. Risk-Based Preventive Energy Management for Resilient Microgrids. – International Journal of Electrical Power & Energy Systems, 2023, vol. 154, DOI: 10.2139/ssrn.4245626.
15. Göksu B., Şakar C., Yüksel O. A Probabilistic Assessment of Ship Blackout Incident with Fault Tree Analysis into (FTA) Bayesian Network (BN) – Journal of Marine Engineering & Technology, 2024, vol. 24, No. 1, pp. 54–69, DOI: 10.1080/20464177.2024.2423425.
16. Ibrion M., Paltrinieri N., Nejad A.R. Learning from Failures in Cruise Ship Industry: The Blackout of Viking Sky in Hustadvika, Norway. – Engineering Failure Analysis, 2021, vol. 125, DOI: 10.1016/j.engfailanal.2021.105355.
17. Im J., Rho B., Lee S. Empirical Case Study of Black-Out Incident Caused by Incomplete Combustion and Blow-by in Ship Generator Engines. – Journal of Advanced Marine Engineering and Technology (JAMET), 2024, vol. 48, No. 4, pp. 186–197
Published
2025-06-26
Section
Article