Absorption Characteristics of Thermoplastic Polyimide Films

Authors

  • Margarita E. BORISOVA
  • Nilan S. DZHAYASINGHE B.M.D.
  • Andrey L. DIDENKO
  • Vadim E. KRAFT

DOI:

https://doi.org/10.24160/0013-5380-2025-12-38-49

Keywords:

absorption characteristics, absorption coefficient, recovery voltage, thermoplastic polyimides, R-BAPB, R-BAPS, equivalent Maxwell and Voigt circuits

Abstract

The article addresses the study of absorption phenomena in films of thermoplastic polyimides obtained at the Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre Kurchatov Institute – Institute of Macromolecular Compounds. Heat-resistant polyimide materials are widely used in the insulation of electrical machines, in capacitor and cable technology, and as active dielectrics. To expand the scope of their application, information is needed on their electrophysical properties, including absorption characteristics, which play a significant role in the phenomena of electrical transfer, polarization, and electrical strength of dielectrics. The article examines the full set of absorption characteristics of import-substituting thermoplastic polyimide (TP PI) materials R-BAPB and R-BAPS. The identity of equivalent Maxwell and Voigt circuits has been established at certain ratios between their parameters. The experimentally measured dependences of charging and discharging currents are analyzed on the basis of an equivalent Voigt circuit. The parameters of an identical to it equivalent Maxwell circuit are calculated. The dependences of the recovery voltage, self-discharge voltage, and absorption coefficients ka are obtained. The ka value depends not only on the method, but also on the mode in which this value is measured. The dependences of the dielectric constant and losses in the low frequency range are calculated. It is shown that there is no significant difference between the materials in the totality of absorption characteristics.

Author Biographies

Margarita E. BORISOVA

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Professor of the Higher School of High-Voltage Energy, Dr. Sci. (Eng.), Professor.

Nilan S. DZHAYASINGHE B.M.D.

(Power Grid Solutions (PVT) Ltd., Katubedda, Colombo, Sri Lanka) – Engineer.

Andrey L. DIDENKO

(Branch of Petersburg Nuclear Physics Institute Named By B.P.Konstantinov of National Research Centre «Kurchatov Institute» –Institute of Macromolecular Compounds, St. Petersburg, Russia) – Senior Researcher at Laboratory No. 1 for the Synthesis of High-Temperature Resistant Polymers, Cand. Sci. (Chem.).

Vadim E. KRAFT

(Peter the Great St. Petersburg Polytechnic University; Branch of Petersburg Nuclear Physics Institute Named By B.P.Konstantinov of National Research Centre «Kurchatov Institute» –Institute of Macromolecular Compounds, St. Petersburg, Russia) – Postgraduate Student; Assistant.

References

1. Falkovich S.G. et al. Influence of the Electrostatic Interactions on Thermophysical Properties of Polyimides: Molecular‐Dynamics Simulations. – Journal of Polymer Science Part B: Polymer Physics, 2014, vol. 52, No. 9, pp. 640–646, DOI: 10.1002/polb.23460.
2. Chung T.C.M. Functional Polyolefins for Energy Applications. – Macromolecules, 2013, vol. 46, No. 17, pp. 6671–6698, DOI: 10.1021/ma401244t.
3. Liaw D.J. et al. Advanced Polyimide Materials: Syntheses, Physical Properties and Applications. – Progress in Polymer Science, 2012, vol. 37, No. 7, pp. 907–974, DOI: 10.1016/j.progpolymsci.2012.02.005.
4. Gouzman I. et al. Advances in Polyimide‐Based Materials for Space Applications. – Advanced Materials, 2019, vol. 31, No. 18, DOI: 10.1002/adma.201807738.
5. Sezer Hicyilmaz A., Celik Bedeloglu A. Applications of Polyimide Coatings: A Review. – SN Applied Sciences, 2021, vol. 3, DOI: 10.1007/s42452-021-04362-5.
6. Feger C. Advances in Polyimide: Science and Technology. CRC Press, 1993, 706 p.
7. Apel P.Y. et al. Morphology of Latent and Etched Heavy Ion Tracks in Radiation Resistant Polymers Polyimide and Poly (Ethylene Naphthalate). – Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, vol. 185, No. 1-4, pp. 216–221, DOI: 10.1016/S0168-583X(01)00967-3.
8. Huang J. et al. Synthesis and Properties of Polyimide Silica Nanocomposite Film with High Transparent and Radiation Resistance. – Nanomaterials, 2021, vol. 11, No. 3, DOI: 10.3390/nano11030562.
9. Cherkashina N.I. et al. Gamma Radiation Attenuation Characteristics of Polyimide Composite with WO2. – Progress in Nuclear Energy, 2021, vol. 137, DOI: 10.1016/j.pnucene.2021.103795.
10. Riza M.A. et al. Hygroscopic Materials and Characterization Techniques for Fiber Sensing Applications: a review. – Sensors and Materials, 2020, vol. 32, No. 11, pp. 3755–3772, DOI: 10.18494/SAM.2020.2967.
11. Borisova M.E. et al. Charge Relaxation in Partially Crystalline R-BAPB Polyimides under Conditions of Elevated Humidity. – St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 2018, vol. 11, No. 2, pp. 88–95, DOI: 10.18721/JPM.11209.
12. Kumari C.R.U. et al. Development of a Highly Accurate and Fast Responsive Salinity Sensor Based on Nuttall Apodized Fiber Bragg Grating coated with Hygroscopic Polymer for Ocean Observation. – Optical Fiber Technology, 2019, vol. 53, DOI: 10.1016/j.yofte.2019.102036.
13. Rahnamoun A. et al. Chemical Dynamics Characteristics of Kapton Polyimide Damaged by Electron Beam Irradiation. – Polymer, 2019, vol. 176, pp. 135–145, DOI: 10.1016/j.polymer.2019.05.035.
14. Feng X., Liu J. Thermoplastic Polyimide (TPI). – In Book: High Performance Polymers and Their Nanocomposites. Wiley, 2018, pp. 149–219, DOI: 10.1002/9781119363910.ch6.
15. Patel P. et al. Mechanism of Thermal Decomposition of Poly (Ether Ketone) (PEEK) from a Review of Decomposition Studies. – Polymer Degradation and Stability, 2010, vol. 95, No. 5, pp. 709–718, DOI: 10.1016/j.polymdegradstab.2010.01.024.
16. Pulyalina A. et al. Impact of Layered Perovskite Oxide La 0.85 Yb 0.15 AlO3 on Structure and Transport Properties of Polyetherimide. – International Journal of Molecular Sciences, 2023, vol. 24, No. 1, DOI: 10.3390/ijms24010715.
17. Ренне В.Т. Электрические конденсаторы. Л.: Энергия, 1969, 593 с.
18. Michaeli L. et al. Influence of the capacitor’s dielectric absorption on the dual slope ADC. – 21st IMEKO TC4 International Symposium and 19th International Workshop on ADC Modelling and Testing Understanding the World through Electrical and Electronic Measurement, 2016, pp. 257–261.
19. Jonscher A.K. Dielectric Relaxation in Solids. London, U.K.: Chelsea Dielectrics Press, 1983, pp. xiii, 380.
20. Борисова М.Э., Койков С.Н. Анализ абсорбционных и частотных характеристик диэлектриков на основе модельных эквивалентных схем. – Электричество, 1988, № 4, с. 66–70.
21. Борисова М.Э. и др. Оценка параметров неоднородности диэлектрика на основе анализа абсорбционных характеристик. – Электричество, 1995, № 6, с. 62–67.
---
Работа выполнена в рамках государственного задания (№1023031700040-5-1.4.4 "Полимерные и композиционные материалы для перспективных технологий").
#
1. Falkovich S.G. et al. Influence of the Electrostatic Interactions on Thermophysical Properties of Polyimides: Molecular‐Dynamics Simulations. – Journal of Polymer Science Part B: Polymer Physics, 2014, vol. 52, No. 9, pp. 640–646, DOI: 10.1002/polb.23460.
2. Chung T.C.M. Functional Polyolefins for Energy Applications. – Macromolecules, 2013, vol. 46, No. 17, pp. 6671–6698, DOI: 10.1021/ma401244t.
3. Liaw D.J. et al. Advanced Polyimide Materials: Syntheses, Physical Properties and Applications. – Progress in Polymer Science, 2012, vol. 37, No. 7, pp. 907–974, DOI: 10.1016/j.progpolymsci.2012. 02.005.
4. Gouzman I. et al. Advances in Polyimide‐Based Materials for Space Applications. – Advanced Materials, 2019, vol. 31, No. 18, DOI: 10.1002/adma.201807738.
5. Sezer Hicyilmaz A., Celik Bedeloglu A. Applications of Polyimide Coatings: A Review. – SN Applied Sciences, 2021, vol. 3, DOI: 10.1007/s42452-021-04362-5.
6. Feger C. Advances in Polyimide: Science and Technology. CRC Press, 1993, 706 p.
7. Apel P.Y. et al. Morphology of Latent and Etched Heavy Ion Tracks in Radiation Resistant Polymers Polyimide and Poly (Ethylene Naphthalate). – Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, vol. 185, No. 1-4, pp. 216–221, DOI: 10.1016/S0168-583X(01)00967-3.
8. Huang J. et al. Synthesis and Properties of Polyimide Silica Nanocomposite Film with High Transparent and Radiation Resistance. – Nanomaterials, 2021, vol. 11, No. 3, DOI: 10.3390/nano11030562.
9. Cherkashina N.I. et al. Gamma Radiation Attenuation Characteristics of Polyimide Composite with WO2. – Progress in Nuclear Energy, 2021, vol. 137, DOI: 10.1016/j.pnucene.2021.103795.
10. Riza M.A. et al. Hygroscopic Materials and Characterization Techniques for Fiber Sensing Applications: a review. – Sensors and Materials, 2020, vol. 32, No. 11, pp. 3755–3772, DOI: 10.18494/SAM.2020.2967.
11. Borisova M.E. et al. Charge Relaxation in Partially Crystalline R-BAPB Polyimides under Conditions of Elevated Humidity. – St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 2018, vol. 11, No. 2, pp. 88–95, DOI: 10.18721/JPM.11209.
12. Kumari C.R.U. et al. Development of a Highly Accurate and Fast Responsive Salinity Sensor Based on Nuttall Apodized Fiber Bragg Grating coated with Hygroscopic Polymer for Ocean Observation. – Optical Fiber Technology, 2019, vol. 53, DOI: 10.1016/j.yofte.2019.102036.
13. Rahnamoun A. et al. Chemical Dynamics Characteristics of Kapton Polyimide Damaged by Electron Beam Irradiation. – Polymer, 2019, vol. 176, pp. 135–145, DOI: 10.1016/j.polymer.2019.05.035.
14. Feng X., Liu J. Thermoplastic Polyimide (TPI). – In Book: High Performance Polymers and Their Nanocomposites. Wiley, 2018, pp. 149–219, DOI: 10.1002/9781119363910.ch6.
15. Patel P. et al. Mechanism of Thermal Decomposition of Poly (Ether Ketone) (PEEK) from a Review of Decomposition Studies. – Polymer Degradation and Stability, 2010, vol. 95, No. 5, pp. 709–718, DOI: 10.1016/j.polymdegradstab.2010.01.024.
16. Pulyalina A. et al. Impact of Layered Perovskite Oxide La 0.85 Yb 0.15 AlO3 on Structure and Transport Properties of Polyetherimide. – International Journal of Molecular Sciences, 2023, vol. 24, No. 1, DOI: 10.3390/ijms24010715.
17. Renne V.T. Elektricheskie kondensatory (Electrical Capaci-tors). L.: Energiya, 1969, 593 p.
18. Michaeli L. et al. Influence of the capacitor’s dielectric absorption on the dual slope ADC. – 21st IMEKO TC4 International Symposium and 19th International Workshop on ADC Modelling and Testing Understanding the World through Electrical and Electronic Measurement, 2016, pp. 257–261.
19. Jonscher A.K. Dielectric Relaxation in Solids. London, U.K.: Chelsea Dielectrics Press, 1983, 380 p.
20. Borisova M.E., Koykov S.N. Elektrichestvo – in Russ. (Electricity), 1988, No. 4, pp. 66–70.
21. Borisova M.E. et al. Elektrichestvo – in Russ. (Electricity), 1995, No. 6, pp. 62–67
---
The work was performed within the framework of the state assignment (No. 1023031700040-5-1.4.4 "Polymer and composite materials for advanced technologies")

Published

2025-10-30

Issue

Section

Article