The Effect of Extremely Low Temperatures and Their Sudden Changes on the Failure Rate of 110–220 kV Terminal Cable Couplings

Authors

  • Dmitriy B. GVOZDEV
  • Artem Yu. KISELEV
  • Aleksandr N. NAZARYCHEV

DOI:

https://doi.org/10.24160/0013-5380-2026-1-12-22

Keywords:

power line, cable fittings, terminal and connecting cable couplings, elastomeric elements, installation, stress cone, insulation electrical breakdown, accidents, damages, Far North, extreme conditions, Yakutia

Abstract

In modern power systems, 110-220 kV cable and overhead power transmission lines are extensively used. Terminal cable couplings are critically important components of such lines, failures of which lead to serious accidents. A striking example of problems concerned with operation of these components is the experience of the Republic of Sakha (Yakutia), where in 2021–2023, 19 damages to terminal couplings on 110-220 kV power lines were recorded. This region is uniquely featured by its harsh climatic conditions with extremely low temperatures, which may drop to as low as –60℃, and their sudden diurnal fluctuations, e.g., from –60 ℃ to –35 ℃ within 3-4 h. The results of accident investigations indicate that the existing cable coupling designs are not adapted to such climatic conditions. The article considers a comprehensive study of the operation of terminal cable couplings under the conditions of extreme and rapidly changing temperatures. The aim of the study is to analyze the effect the ambient temperature gradient has on the cable fitting components and assess the drawbacks of standard designs. Based on the analysis performed, engineering solutions and recommendations for modernizing the couplings have been proposed, which are aimed at ensuring their reliability in regions with a harsh climate, which is of great practical importance for securing uninterrupted power supply.

Author Biographies

Dmitriy B. GVOZDEV

(PJSC ROSSETI Moscow Region, National Research University "Moscow Power Engineering Institute", Moscow, Russia) – First Deputy General Director – Chief Engineer, Professor of the Power System Dept., Dr. Sci. (Eng.), Docent.

Artem Yu. KISELEV

(Branch of PJSC ROSSETI – Yakutsk Enterprise of Main Electric Networks, Yakutsk, Russia) – Deputy Director – Chief Engineer.

Aleksandr N. NAZARYCHEV

(Saint Petersburg Mining University, St. Petersburg, Russia) – Professor of the Electric Power Engineering and Electromechanics Dept., Dr. Sci. (Eng.), Professor.

References

1. Киселев А.Ю., Львов А.П. Об опыте эксплуатации концевых кабельных муфт напряжением 110-220 кВ в условиях Крайнего Севера. – Электрические станции, 2025, № 5, с. 8–17.

2. Айгнер А., Маркелов И.А. Обзор cовременного состояния технологий измерения ЧР в высоковольтной кабельной арматуре на переменном токе. – КАБЕЛЬ-news, 2013, № 4, с. 30–38.

3. Грешняков Г.В. К вопросу о конструировании кабельных муфт высокого напряжения. – Силовая электроника, 2014, № 1, с. 76–79.

4. Li G., Wang Y., Xu X. Research on the Electric Field Intensity Distribution of High-Voltage Cable Terminal Improved by Non-Linear Material. – Manufacturing Review, 2021, vol. 8, DOI: 10.1051/mfreview/2021018.

5. Zachariades C. et al. Electric Field and Thermal Analysis of 132 kV Ceramic Oil-Filled Cable Sealing Ends. – IEEE Transactions on Power Delivery, 2020, vol. 36, No. 1, DOI: 10.1109/TPWRD.2020.2977728.

6. Li S. et al. Partial Discharge Detection and Defect Location Method in GIS Cable Terminal. – Energies, 2023, vol. 16 (1), DOI: 10.3390/en16010413.

7. Zhou X. et al. Simulation of Electric Field Around Typical Defects in 110 kV XLPE Power Cable Joints. –International Conference on Circuits, Devices and Systems (ICCDS), 2017, pp. 21–24, DOI: 10.1109/ICCDS.2017.8120443.

8. Andrei L., Vlad I., Ciuprina F. Electric Field Distribution in Power Cable Insulation Affected by Various Defects. – International Symposium on Fundamentals of Electrical Engineering (ISFEE), 2014, DOI: 10.1109/ISFEE.2014.7050570.

9. Luo Y. et al. A Sophisticated Method of the Mechanical Design of Cable Accessories Focusing on Interface Contact Pressure. – Energies, 2020, vol. 13 (11), DOI: 10.3390/en13112976.

10. Wang R.-M., Zheng S.-R., Zheng Y. Other Properties of Polymer Composites. – Polymer Matrix Composites and Technology, 2011, pp. 513–548, DOI: 10.1533/9780857092229.3.513.

11. Новикова С.И. Тепловое расширение твердых тел. М.: Наука, 1974, 292 с.

12. Ratna D. Thermal Properties of Thermosets. – Thermosets. Structure, Properties and Applications. Woodhead Publishing, 2012, pp. 62–91, DOI: 10.1533/9780857097637.

13. Chrysochoos A. Thermomechanical Analysis of the Cyclic Behavior of Materials. – Procedia Iutam, 2012, vol. 4, pp. 15–26, DOI: 10.1016/j.piutam.2012.05.003.

14. Hale A. Thermosets. – Handbook of Thermal Analysis and Calorimetry, 2002, vol. 3, chapter 9, pp. 295–394, DOI: 10.1016/S1573-4374(02)80012-7

15. ГОСТ 32618.2-2014. Пластмассы. Термомеханический анализ (ТМА). Часть 2. Определение коэффициента линейного теплового расширения и температуры стеклования. М.: Стандартинформ, 2014, 14 с.

16. Meola C. et al. Cross-Linked Polyethylene. – Encyclopedia of Chemical Processing, 2005, vol. 1, pp. 577–588, DOI: 10.1081/E-ECHP- 120007720.

17. Aljoumaa K., Allaf A.W. Morphology, structure, properties and applications of XLPE. – Crosslinkable Polyethylene: Manufacture, Properties, Recycling and Applications, 2021, pp. 125–166, DOI: 10.1007/978-981-16-0514-7_6.

18. Saba N., Jawaid M. A Review on Thermomechanical Properties of Polymers and Fibers Reinforced Polymer Composites. – Journal of Industrial and Engineering Chemistry, 2018, vol. 67, DOI: 10.1016/j.jiec.2018.06.018.

19. Pinto R. V. et al. Analysis on the Effect of the Geometry and the Boundary Conditions Applied to the Thermoelastic Analysis of Umbilical Cables. – Journal of Thermal Analysis and Calorimetry, 2025, vol. 150, pp. 7995–8013, DOI:10.1007/s10973-025-14248-y.

20. Gupta S., Ramamurthy P.C., Madras G. Synthesis and Characterization of Silicone Polymer/Functionalized Mesostructured Silica Composites. – Polymer Chemistry, 2011, vol. 2, No. 11, pp. 2643–2650, DOI: 10.1039/C1PY00316J.

21. Zhou W. et al. Novel Heat‐Conductive Composite Silicone Rubber. – Journal of Applied Polymer Science, 2007, vol. 104, No. 4, pp. 2478–2483, DOI: 10.1002/app.25479.

22. Jaunich M., Wolff D., Stark W. Investigating Low-temperature Properties of Rubber Seals – 13020. – Proceedings of the WM2013, 2013, pp. 24–28.

23. Liang H. et al. EPDM Recycled Rubber Powder Characterization: Thermal and Thermogravimetric Analysis. – Rubber Chemistry and Technology, 2014, vol. 87, No. 3, pp. 538–556, DOI: 10.5254/rct.14.87988.

24. Rashid R.Z.A. et al. Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles. – Materials, 2022, vol. 15, No. 7, pp. 25–56, DOI: 10.3390/ma15072556.

25. Xie Z. et al. Influence of Temperature on Hyperelastic Mechanical Behavior of Accelerated Aged EPDM Rubber. – Polymers, 2025, vol. 17, No. 12, pp. 16–26, DOI: 10.3390/polym17121626.

26. Bianchi M. et al. Thermo-Mechanical Behavior of Novel EPDM Foams Containing a Phase Change Material for Thermal Energy Storage Applications. – Polymers, 2022, vol. 14, No. 19, pp. 40–58, DOI: 10.3390/polym14194058.

27. Larson K. Low Temperature Characteristics of Silicones [Электрон. ресурс], URL: https://www.electronics.org/system/files/technical_resource/E14%26S05-04.pdf (дата обращения 05.10.2025).

28. Mower T.M. Thermomechanical Behavior of Aerospace-Grade RTV (Silicone Adhesive). – International Journal of Adhesion and Adhesives, 2018, vol. 87, pp. 64–72, DOI: 10.1016/j.ijadhadh.2018.08.009.

29. Bosq N. et al. Melt and Glass Crystallization of PDMS and PDMS Silica Nanocomposites. – Physical Chemistry Chemical Physics, 2014, vol. 16, No. 17, pp. 7830–7840, DOI: 10.1039/c4cp00164h.

30. Пат. RU 2676531 C1. Кабельная арматура для соединения высоковольтного кабеля с высоковольтным компонентом или другим высоковольтным кабелем / Я. Чизевский и др., 2019.

31. Пат. RU 236769 U1. Концевая кабельная муфта наружной установки / В.Г. Скорик, А.Ю. Киселев, 2025

32. Куштапин А.В. и др. Повышение надежности магистральных энергетических объектов на Дальнем Востоке в условиях Крайнего Севера. – Энергия единой сети, 2025, № 2 (77), с. 74–78.

33. Подковальников С.В. Смена парадигмы управления электроэнергетическими системами. – Электричество, 2024, № 3, с. 4–15.

34. Корявин А.Р. Методы математической статистики при анализе вероятностных характеристик внешней изоляции. – Электричество, 2024, № 3, с. 26–34.

#

1. Kiselev A.Yu., L’vov A.P. Elektricheskie stantsii – in Russ. (Electrical Stations), 2025, No. 5, pp. 8–17.

2. Aygner A., Markelov I.A. KABEL’-news – in Russ. (CABLE-News), 2013, No. 4, pp. 30–38.

3. Greshnyakov G.V. Silovaya elektronika – in Russ. (Power Elec-tronics), 2014, No. 1, pp. 76–79.

4. Li G., Wang Y., Xu X. Research on the Electric Field Intensity Distribution of High-Voltage Cable Terminal Improved by Non-Linear Material. – Manufacturing Review, 2021, vol. 8, DOI: 10.1051/mfreview/2021018.

5. Zachariades C. et al. Electric Field and Thermal Analysis of 132 kV Ceramic Oil-Filled Cable Sealing Ends. – IEEE Transactions on Power Delivery, 2020, vol. 36, No. 1, DOI: 10.1109/TPWRD.2020.2977728.

6. Li S. et al. Partial Discharge Detection and Defect Location Method in GIS Cable Terminal. – Energies, 2023, vol. 16 (1), DOI: 10.3390/en16010413.

7. Zhou X. et al. Simulation of Electric Field Around Typical Defects in 110 kV XLPE Power Cable Joints. –International Confe-rence on Circuits, Devices and Systems (ICCDS), 2017, pp. 21–24, DOI: 10.1109/ICCDS.2017.8120443.

8. Andrei L., Vlad I., Ciuprina F. Electric Field Distribution in Power Cable Insulation Affected by Various Defects. – International Symposium on Fundamentals of Electrical Engineering (ISFEE), 2014, DOI: 10.1109/ISFEE.2014.7050570.

9. Luo Y. et al. A Sophisticated Method of the Mechanical Design of Cable Accessories Focusing on Interface Contact Pressure. – Energies, 2020, vol. 13 (11), DOI: 10.3390/en13112976.

10. Wang R.-M., Zheng S.-R., Zheng Y. Other Properties of Polymer Composites. – Polymer Matrix Composites and Technology, 2011, pp. 513–548, DOI: 10.1533/9780857092229.3.513.

11. Novikova S.I. Teplovoe rasshirenie tverdyh tel (Thermal Expansion of Solids). M.: Nauka, 1974, 292 p.

12. Ratna D. Thermosets. Structure, Properties and Applications. Woodhead Publishing, 2012, pp. 62–91, DOI: 10.1533/9780857097637.

13. Chrysochoos A. Procedia Iutam, 2012, vol. 4, pp. 15–26, DOI: 10.1016/j.piutam.2012.05.003.

14. Hale A. Thermosets. – Handbook of Thermal Analysis and Calorimetry, 2002, vol. 3, chapter 9, pp. 295–394, DOI: 10.1016/S1573-4374(02)80012-7

15. GOST 32618.2-2014. Plastmassy. Termomekhanicheskiy ana-liz (TMA). Chast’ 2. Opredelenie koeffitsienta lineynogo teplovogo rasshireniya i temperatury steklovaniya (Plastics. Thermomechanical Analysis (TMA). Part 2. Determination of Coefficient of Linear Thermal Expansion and Glass Transition Temperatur). M.: Standartinform, 2014, 14 p.

16. Meola C. et al. Cross-Linked Polyethylene. – Encyclopedia of Chemical Processing, 2005, vol. 1, pp. 577–588, DOI: 10.1081/E- ECHP-120007720.

17. Aljoumaa K., Allaf A.W. Morphology, structure, properties and applications of XLPE. – Crosslinkable Polyethylene: Manufacture, Properties, Recycling and Applications, 2021, pp. 125–166, DOI: 10.1007/978-981-16-0514-7_6.

18. Saba N., Jawaid M. A Review on Thermomechanical Properties of Polymers and Fibers Reinforced Polymer Composi-tes. – Journal of Industrial and Engineering Chemistry, 2018, vol. 67, DOI: 10.1016/j.jiec.2018.06.018.

19. Pinto R. V. et al. Analysis on the Effect of the Geometry and the Boundary Conditions Applied to the Thermoelastic Analysis of Umbilical Cables. – Journal of Thermal Analysis and Calorimetry, 2025, vol. 150, pp. 7995–8013, DOI:10.1007/s10973-025-14248-y.

20. Gupta S., Ramamurthy P.C., Madras G. Synthesis and Characterization of Silicone Polymer/Functionalized Mesostructured Silica Composites. – Polymer Chemistry, 2011, vol. 2, No. 11, pp. 2643–2650, DOI: 10.1039/C1PY00316J.

21. Zhou W. et al. Novel Heat‐Conductive Composite Silicone Rubber. – Journal of Applied Polymer Science, 2007, vol. 104, No. 4, pp. 2478–2483, DOI: 10.1002/app.25479.

22. Jaunich M., Wolff D., Stark W. Investigating Low-temperature Properties of Rubber Seals – 13020. – Proceedings of the WM2013, 2013, pp. 24–28.

23. Liang H. et al. EPDM Recycled Rubber Powder Characterization: Thermal and Thermogravimetric Analysis. – Rubber Chemistry and Technology, 2014, vol. 87, No. 3, pp. 538–556, DOI: 10.52 54/rct.14.87988.

24. Rashid R.Z.A. et al. Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles. – Materials, 2022, vol. 15, No. 7, pp. 25–56, DOI: 10.3390/ma15072556.

25. Xie Z. et al. Influence of Temperature on Hyperelastic Mechanical Behavior of Accelerated Aged EPDM Rubber. – Polymers, 2025, vol. 17, No. 12, pp. 16–26, DOI: 10.3390/polym17121626.

26. Bianchi M. et al. Thermo-Mechanical Behavior of Novel EPDM Foams Containing a Phase Change Material for Thermal Energy Storage Applications. – Polymers, 2022, vol. 14, No. 19, pp. 40–58, DOI: 10.3390/polym14194058.

27. Larson K. Low Temperature Characteristics of Silicones [Electron. resource], URL: https://www.electronics.org/system/files/technical_resource/E14%26S05-04.pdf (Accessed on 05.10.2025).

28. Mower T.M. International Journal of Adhesion and Adhesives, 2018, vol. 87, pp. 64–72, DOI: 10.1016/j.ijadhadh.2018.08.009.

29. Bosq N. et al. Physical Chemistry Chemical Physics, 2014, vol. 16, No. 17, pp. 7830–7840, DOI: 10.1039/c4cp00164h.

30. Pat. RU 2676531 C1. Kabel’naya armatura dlya soedineniya vysokovol’tnogo kabelya s vysokovol’tnym komponentom ili drugim vysokovol’tnym kabelem (Cable Fittings for Connecting a High-Voltage Cable to a High-Voltage Component Or Other High-Voltage Cable) / Ya. Chizevskiy et al., 2019.

31. Pat. RU 236769 U1. Kontsevaya kabel’naya mufta naruzhnoy ustanovki (Outdoor End Cable Coupling) / V.G. Skorik, A.Yu. Kiselev, 2025

32. Kushtapin A.V. et al. Energiya edinoy seti – in Russ. (Energy of Unified Grid), 2025, No. 2 (77), pp. 74–78.

33. Podkoval’nikov S.V. Elektrichestvo – in Russ. (Electricity), 2024, No. 3, pp. 4–15.

34. Koryavin A.R. Elektrichestvo – in Russ. (Electricity), 2024, No. 3, pp. 26–34

Published

2026-01-19

Issue

Section

Article