Modification of the CIGRE Formula for Calculating the Grounding Device Impulse Impedance Considering the Ionization of Two-Layer Soil
DOI:
https://doi.org/10.24160/0013-5380-2026-2-17-26Keywords:
lightning current, soil ionization, CIGRE formula, two-layer soil, grounding deviceAbstract
When lightning current spreads through a grounding device, it produces a strong electric field that causes soil ionization, which in turn causes a decrease in the grounding device impulse impedance. The CIGRE formula provides a simple analytical dependence of the grounding device impedance on the current, but it is applicable only in single-layer soil. A modified version of the CIGRE formula for two-layer soil is developed and investigated. The characteristics of ionization processes in two-layer soil are studied. The most significant decrease in the grounding device impedance is observed in soil with a high resistivity of the upper layer, in which the ionization processes are more intense in nature, and the ionization zone expansion brings the grounding device closer to the well-conducting lower layer. The critical ionization field strength in the single-layer model depends significantly on the current, whereas in the two-layer model it is almost constant, which was established in processing the experimental data and investigated theoretically. An equivalent single-layer soil is characterized not only by an equivalent resistivity, but also by an equivalent critical field strength, which can be significantly higher (if the upper layer conductivity is higher than the lower layer conductivity) or less than the standard values at high currents. For 110 and 220 kV double-circuit overhead power lines, a significant (tens of percent) decrease in the expected probability of the insulation back flashover has been obtained in the case of taking soil ionization into account.
References
СПИСОК ЛИТЕРАТУРЫ
1. Рябкова Е.Я. Заземления в установках высокого напряжения. М.: Энергия, 1978, 224 с.
2. Шишигин С.Л., Шишигин Д.С. Расчет числа грозовых отключений двухцепной воздушной линии 110 кВ. – Электричество, 2025, № 8, с. 21–30.
3. Анненков В.З. Искрообразование в земле вокруг заземлителей молниезащиты. – Электричество, 1993, № 12, с. 15–20.
4. Шишигин С.Л., Шишигин Д.С., Смирнов И.Н. Расчет заземлителей с учетом ионизации и частотных свойств грунта. – Известия РАН. Энергетика, 2022, № 6, с. 46–63.
5. Корсунцев А.В. Применение теории подобия к расчету импульсных характеристик сосредоточенных заземлителей. – Электричество, 1958, № 5, с. 31–35.
6. CIGRE Brochure No. 64. Guide to Procedures for Estimating the Lightning Performance of Transmission Lines, 1991, 61 p.
7. РД 153-34.3-35.125-99. Руководство по защите электрических сетей 6–1150 кВ от грозовых и внутренних перенапряжений. СПб.: ПЭИПК Минтопэнерго РФ, 1999, 353 с.
8. Sekioka S, Sonoda T., Ametani A. Experimental Study of Current-Dependent Grounding Resistance of Rod Electrode. – IEEE Transactions on Power Delivery, 2005, vol. 20, No. 2, pp. 1569–1576, DOI: 10.1109/TPWRD.2004.838660.
9. Sekioka S. et al. Current-Dependent Grounding Resistance Model Based on Energy Balance of Soil Ionization. IEEE Transactions on Power Delivery, 2006, vol. 21, No. 1, pp. 194–201, DOI: 10.1109/TPWRD.2005.852337.
10. Mokhtari M., Gharehpetian G.B. Integration of Energy Balance of Soil Ionization in CIGRE Grounding Electrode Resistance Model. – IEEE Transactions on Electromagnetic Compatibility, 2018, vol. 60, No. 2, pp. 402–413, DOI: 10.1109/TEMC.2017.2731807.
11. Gazzana D.S. et al. An Improved Soil Ionization Representation to Numerical Simulation of Impulsive Grounding Systems. – IEEE Transactions on Magnetics, 2018, vol. 54, No. 3, DOI: 10.1109/TMAG. 2017.2750019.
12. Mousa A.M. The Soil Ionization Gradient Associated with Discharge of High Currents into Concentrated Electrodes. – IEEE Transactions on Power Delivery, 1994, vol.9, No 3, pp. 1669–1677, DOI: 10.1109/61.311195.
13. IEEE Std. 1410-2010. IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines, 2011, 73 p., DOI: 10.1109/IEEESTD.2011.5706451.
14. Шишигин С.Л. Векторная форма записи потенциала стержневого заземлителя в однородной и двухслойной земле. – Электричество, 2007, № 7, с. 22–27.
15. Заборовский А.И. Электроразведка. М.: Гостоптехиздат, 1963, 423 с.
16. Борисов Р.К., Коломиец Е.В., Колиушко Г.М. Исследование импульсных характеристик заземляющих устройств. – 3-я Российская конф. по заземляющим устройствам, 2008, с. 10–15.
17. Программа «ЗУМ» [Электрон. ресурс], URL: https://zym-emc.ru/zymprogram.html (дата обращения 01.11.25).
#
1. Ryabkova E.Ya. Zazemleniya v ustanovkah vysokogo napryazheniya (Earthing in High Voltage Installations). M.: Energiya, 1978, 224 p.
2. Shishigin S.L., Shishigin D.S. Elektrichestvo – in Russ. (Electricity), 2025, No. 8, pp. 21–30.
3. Annenkov V.Z. Elektrichestvo – in Russ. (Electricity), 1993, No. 12, pp. 15–20.
4. Shishigin S.L., Shishigin D.S., Smirnov I.N. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Energy Industry), 2022, No. 6, pp. 46–63.
5. Korsuntsev A.V. Elektrichestvo – in Russ. (Electricity), 1958, No. 5, pp. 31–35.
6. CIGRE Brochure No. 64. Guide to Procedures for Estimating the Lightning Performance of Transmission Lines, 1991, 61 p.
7. RD 153-34.3-35.125-99. Rukovodstvo po zashchite elektriches-kih setey 6–1150 kV ot grozovyh i vnutrennih perenapryazheniy (Guidelines for the Protection of Electrical Networks 6–1150 kV from Lightning and Internal Overvoltages). SPb.: PEIPK Mintopenergo RF, 1999, 353 p.
8. Sekioka S, Sonoda T., Ametani A. Experimental Study of Current-Dependent Grounding Resistance of Rod Electrode. – IEEE Transactions on Power Delivery, 2005, vol. 20, No. 2, pp. 1569–1576, DOI: 10.1109/TPWRD.2004.838660.
9. Sekioka S. et al. Current-Dependent Grounding Resistance Model Based on Energy Balance of Soil Ionization. IEEE Transactions on Power Delivery, 2006, vol. 21, No. 1, pp. 194–201, DOI: 10.1109/TPWRD.2005.852337.
10. Mokhtari M., Gharehpetian G.B. Integration of Energy Balance of Soil Ionization in CIGRE Grounding Electrode Resistance Model. – IEEE Transactions on Electromagnetic Compatibility, 2018, vol. 60, No. 2, pp. 402–413, DOI: 10.1109/TEMC.2017.2731807.
11. Gazzana D.S. et al. An Improved Soil Ionization Representation to Numerical Simulation of Impulsive Grounding Systems. – IEEE Transactions on Magnetics, 2018, vol. 54, No. 3, DOI: 10.1109/TMAG.2017.2750019.
12. Mousa A.M. The Soil Ionization Gradient Associated with Discharge of High Currents into Concentrated Electrodes. – IEEE Transactions on Power Delivery, 1994, vol.9, No 3, pp. 1669–1677, DOI: 10.1109/61.311195.
13. IEEE Std. 1410-2010. IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines, 2011, 73 p., DOI: 10.1109/IEEESTD.2011.5706451.
14. Shishigin S.L. Elektrichestvo – in Russ. (Electricity), 2007, No. 7, pp. 22–27.
15. Zaborovskiy A.I. Elektrorazvedka (Electrical Exploration). M.: Gostoptekhizdat, 1963, 423 p.
16. Borisov R.K., Kolomiets E.V., Koliushko G.M. 3-ya Rossiyskaya konf. po zazemlyayushchim ustroystvam – in Russ. (3rd Russian Conference on Grounding Devices), 2008, pp. 10–15.
17. Programma «ZUM» (The ZYM Program) [Electron. resour-ce], URL: https://zym-emc.ru/zymprogram.html (Accessed on 01.11.25)

