Response Subject to Varying EPS Configuration and Operating Conditions

Authors

  • Valeriy E. SOLODOVNIKOV
  • Vladimir N. TUL’SKIY
  • Roman G. SHAMONOV

DOI:

https://doi.org/10.24160/0013-5380-2026-2-51-62

Keywords:

electric power quality, voltage harmonic distortion, voltage harmonics, resonance, power system frequency response, power system operating conditions, cosine similarity

Abstract

Currently, Russia’s electric power grids of the 110 kV and higher voltage classes are equipped with electric power quality monitoring systems to a rather low extent. In view of this circumstance, frequency response analysis of an EPS is often the only way to determine the need for harmonic voltage distortion reducing measures. However, the fact that the EPS frequency properties depend on the EPS configuration and operating conditions adds significant difficulty to the above-mentioned problem in view of a wide variety of power system states to be taken into consideration. The article examines the variability of frequency response relating to the driving point impedances as seen from the 110-220 kV nodes of an area selected in the Siberian IPS with placing focus on the influence of operating and power balance conditions (power demand and the power plant generating equipment commitment). To determine the list of the representative states in terms of power system configuration and operating conditions for analyzing the EPS frequency properties, it is proposed to use the cosine similarity notion, a metric widely used for pattern recognition, which makes it possible to quantify the visual resemblance between FR curves. Its applicability is illustrated by the example of analyzing the EPS driving point impedance frequency response as seen from the 110 kV bus at one of the grid area substations under the conditions involving outages of some 110 kV dead-end power lines.

Author Biographies

Valeriy E. SOLODOVNIKOV

(ETS-Energo LLC, Moscow, Russia) – Project Manager.

Vladimir N. TUL’SKIY

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Director of the Institute of Electric Power Engineering, Cand. Sci. (Eng.), Docent.

Roman G. SHAMONOV

(PJSC ROSSETI, Moscow, Russia) – Head of the Department of Maintenance of OTU and Modes of the Department of Operational and Technological Management, Cand. Sci. (Eng.).

References

1. Коверникова Л.И. и др. Качество электрической энергии: современное состояние, проблемы и предложения по их решению. Новосибирск: Наука, 2017, 219 с.

2. ГОСТ 32144-2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. М.: Стандартинформ, 2014, 16 с.

3. Распоряжение Правительства Российской Федерации от 30.12.2024 № 4153-р «О Генеральной схеме размещения объектов электроэнергетики до 2042 года».

4. Приказ Минэнерго России от 29.11.2024 № 2328 «Об утверждении схемы и программы развития электроэнергетических систем России на 2025–2030 годы».

5. Sun Y. et al. Harmonic Assessment in Renewable Energy Zones. – CIGRE session, 2024, paper C4-10947-2024, 9 p.

6. Okada N. Review of Harmonic Characteristics in the Japanese Electric Power System. – CIGRE session, 2022, paper C4-10527-2022, 10 p.

7. Kelly B. et al. Investigation of Harmonics Trends and Characteristics on the Irish Transmission System by Analysing Historical PQ Measurements and SCADA Records. – CIGRE session, 2016, paper C4-114-2016, 12 p.

8. Piraud Q., Viel X.M., Michel J. Harmonic Studies Performed by RTE for Wind Farm Connection. – CIGRE session, 2022, paper C4-925-2022, 10 p.

9. Eggenschwiler L. et al. Frequency Scans and Resonance Mode Analysis for Resonance Problems Identification in Power Networks in Presence of Harmonic Pollution. – 24th International Conference & Exhibition on Electricity Distribution (CIRED), 2017, DOI: 10.1049/oap-cired.2017.0807.

10. Приказ Минэнерго России от 03.08.2018 № 630 «Об утверждении требований к обеспечению надёжности электроэнергетических систем, надёжности и безопасности объектов электроэнергетики и энергопринимающих установок «Методические указания по устойчивости энергосистем».

11. Приказ Минэнерго России от 06.12.2022 № 1286 «Об утверждении Методических указаний по проектированию развития энергосистем».

12. CIGRE Technical Brochure 766. Network Modelling for Harmonic Studies / Ed. by M. Val Escudero, G. Lietz, 2019, 241 p.

13. Das J.C. Power System Harmonics and Passive Filter Designs. Piscataway: IEEE Press, 2015, 844 p.

14. Arrillaga J., Watson N.R. Power System Harmonics. 2nd Ed. Chichester: John Wiley & Sons Ltd., 2003, 398 p.

15. Смирнов С.С. Высшие гармоники в сетях высокого напряжения. Новосибирск: Наука, 2010, 327 с.

16. Солодовников В.Е. и др. Методика формирования математической модели ЭЭС для расчётов несинусоидальных установившихся режимов и исследования резонансных явлений. Часть 1. Алгоритм методики и практические аспекты моделирования. – Электроэнергия. Передача и распределение, 2023, № 4, с. 54–62.

17. РД 153-34.0-20.527-98. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования. М.: Изд-во НЦ ЭНАС, 2002, 152 с.

18. Жежеленко И.В. Высшие гармоники в системах электроснабжения промпредприятий. М.: Энергоатомиздат, 2000, 331 с.

19. Dangheti P. Statistics for Machine Learning. Birmingham: Packt Publishing Ltd., 2017, 425 p.

20. Kotu V., Deshpande B. Data Science. Concepts and Practice. 2nd Ed. Cambridge: Morgan Kaufmann Publishers, 2019, 549 p.

#

1. Kovernikova L.I. et al. Kachestvo elektricheskoy energii: sovremennoe sostoyanie, problemy i predlozheniya po ih resheniyu (Power Quality: State-of-the-Art, Problems and Solution Proposals). Novosibirsk: Nauka, 2017, 219 p.

2. GOST 32144-2013. Elektricheskaya energiya. Sovmestimost’ tekhnicheskih sredstv elektromagnitnaya. Normy kachestva elektricheskoy energii v sistemah elektrosnabzheniya obshchego naznacheniya (Electric Energy. Electromagnetic Compatibility of Technical Equip-ment. Power Quality Limits in the Public Power Supply Systems). M.: Standartinform, 2014, 16 p.

3. Rasporyazhenie Pravitel’stva Rossiyskoy Federatsii (Decree of the Government of the Russian Federation) No. 4153-r dated 30.12.2024.

4. Prikaz Minenergo Rossii (Order of the Ministry of Energy of the Russian Federation) No. 2328 dated 29.11.2024.

5. Sun Y. et al. Harmonic Assessment in Renewable Energy Zones. – CIGRE session, 2024, paper C4-10947-2024, 9 p.

6. Okada N. Review of Harmonic Characteristics in the Japanese Electric Power System. – CIGRE session, 2022, paper C4-10527-2022, 10 p.

7. Kelly B. et al. Investigation of Harmonics Trends and Cha-racteristics on the Irish Transmission System by Analysing Historical PQ Measurements and SCADA Records. – CIGRE session, 2016, paper C4-114-2016, 12 p.

8. Piraud Q., Viel X.M., Michel J. Harmonic Studies Performed by RTE for Wind Farm Connection. – CIGRE session, 2022, paper C4-925-2022, 10 p.

9. Eggenschwiler L. et al. Frequency Scans and Resonance Mode Analysis for Resonance Problems Identification in Power Networks in Presence of Harmonic Pollution. – 24th International Conference & Exhibition on Electricity Distribution (CIRED), 2017, DOI: 10.1049/oap-cired.2017.0807.

10. Prikaz Minenergo Rossii (Order of the Ministry of Energy of the Russian Federation) No. 630 dated 03.08.2018.

11. Prikaz Minenergo Rossii (Order of the Ministry of Energy of the Russian Federation) No. 1286 dated 06.12.2022.

12. CIGRE Technical Brochure 766. Network Modelling for Harmonic Studies / Ed. by M. Val Escudero, G. Lietz, 2019, 241 p.

13. Das J.C. Power System Harmonics and Passive Filter Designs. Piscataway: IEEE Press, 2015, 844 p.

14. Arrillaga J., Watson N.R. Power System Harmonics. 2nd Ed. Chichester: John Wiley & Sons Ltd., 2003, 398 p.

15. Smirnov S.S. Vysshie garmoniki v setyah vysokogo napryazheniya (Higher Harmonics in High-Voltage Electical Grids). Novosibirsk: Nauka, 2010, 327 p.

16. Solodovnikov V.E. et al. Elektroenergiya. Peredacha i raspre-delenie – in Russ. (Electricity. Transmission and Distribution), 2023, No. 4, pp. 54–62.

17. RD 153-34.0-20.527-98. Rukovodyashchie ukazaniya po raschetu tokov korotkogo zamykaniya i vyboru elektrooborudovaniya (Guidelines for Calculation of Short Circuit Currents and Selection of Electrical Equipment). M.: Izd-vo NTs ENAS, 2002, 152 p.

18. Zhezhelenko I.V. Vysshie garmoniki v sistemah elektrosnab-zheniya prompredpriyatiy (Higher Harmonics in Industrial Power Supply Systems). M.: Energoatomizdat, 2000, 331 p.

19. Dangheti P. Statistics for Machine Learning. Birmingham: Packt Publishing Ltd., 2017, 425 p.

20. Kotu V., Deshpande B. Data Science. Concepts and Practice. 2nd Ed. Cambridge: Morgan Kaufmann Publishers, 2019, 549 p

Published

2026-02-14

Issue

Section

Article