Development of a Resonant Voltage Inverter with Combined Modulation as Part of a Small-Capacity Power Supply

Authors

  • Il’yas Yu. ABDULHAKOV
  • Irina A. DIKUN
  • Ekaterina N. ZHDANOVA
  • Andrey A. SAHNENKO
  • Egor S. TSVETKOV

DOI:

https://doi.org/10.24160/0013-5380-2026-2-72-83

Keywords:

modular power supply, resonant voltage inverter, thermal analysis, pulse converter, FPWM

Abstract

The article discusses the development of a resonant voltage inverter as an integral part of a modular power supply with the ability to vary its input and output parameters. Based on the developed numerical models that take into account the properties of real semiconductor elements, as well as simulations of a closed-loop control system with pulse-width modulation, power loss on the inverter transistors is calculated in varying the output current and voltage values. The use of combined modulation made it possible to reduce the dimensions of the reactive elements with the possibility to adjust the output parameters in a wide range without a sharp increase in loss during the onset of hard switching. Using the modern end-to-end design principles, as well as data from circuit calculations, a thermal analysis was carried out, which made it possible to determine the geometry of the radiators for the inverter power transistors. Based on the performed calculations, a resonant inverter mock-up was designed and fabricated. Based on experimental studies of the mock-up, the thermal analysis results have been verified, and the need to adjust the voltage feedback channel to cope with the interference occurring at the voltage regulator input has been revealed.

Author Biographies

Il’yas Yu. ABDULHAKOV

(Saint Petersburg Electrotechnical University "LETI"; NEK.TECH LLC, St. Petersburg, Russia) – Docent of the Electrotechnological and Transformational Engineering Dept.; Head of the Power Electronics Development Dept., Cand. Sci. (Eng.).

Irina A. DIKUN

(Saint Petersburg Electrotechnical University "LETI", St. Petersburg, Russia) – Docent of the Robotics and Automation of Production Systems Dept., Cand. Sci. (Eng.).

Ekaterina N. ZHDANOVA

(Saint Petersburg Electrotechnical University "LETI", St. Petersburg, Russia) – Docent of the  Information Measuring Systems and Technologies Dept., Cand. Sci. (Eng.).

Andrey A. SAHNENKO

(Saint Petersburg Electrotechnical University "LETI", St. Petersburg, Russia) – Postgraduate Student of the Electrotechnological and Transformational Engineering Dept

Egor S. TSVETKOV

(Saint Petersburg Electrotechnical University "LETI", St. Petersburg, Russia) – Master's student, Electrotechnological and Transformational Engineering Dept.

References

1. Zhang G. et al. Power Electronics Converters: Past, Present and Future. – Renewable and Sustainable Energy Reviews, 2018, vol. 81, pp. 2028–2044, DOI: 10.1016/j.rser.2017.05.290.

2. Hussein A.M.A., Marei M.I., Soliman M.H. Closed-Form Design Optimization for LLC Converters with Wide Output Voltage Range Based on FHA. – Scientific Reports, 2026, vol. 16, DOI: 10.1038/s41598-025-32640-4.

3. Adragna C. LLC Resonant Converters: An Overview of Modeling, Control and Design Methods and Challenges. – Now Publishers, 2022, DOI 10.1561/9781638280675.

4. Rafin S.M.S.H., Hussein H., Mohammed O.A. An Introduction to Power Electronics Design Methodology. – IEEE Design Methodologies Conference (DMC), 2023, DOI: 10.1109/DMC58182. 2023.10412603.

5. Chen Y. et al. A Comprehensive Review of LLC Resonant Converters in Renewable Energy Applications. – Energies, 2024, vol. 17, No. 7, DOI: 10.3390/en17071555.

6. Chen K.-H. et al. A PWM/PFM Dual-Mode DC-DC Buck Converter with Load-Dependent Efficiency-Controllable Scheme for Multi-Purpose IoT Applications. Electronics. 2021, vol. 10, No. 3, DOI: 10.3390/electronics10030347.

7. Васильев А.С., Конрад Г., Дзлиев С.В. Источники питания высокочастотных электротермических установок: монография. Т. 4. Новосибирск: Изд-во НГТУ, 2006, 426 с.

8. Дзлиев С.В. Характеристики резонансного транзисторного инвертора напряжения при фазовом и частотном регулировании. – Актуальные проблемы теории и практики индукционного нагрева (APIH-2005), 2005, с. 363–369.

9. Абдулхаков И.Ю. Импульсные частотно-фазовый и частотно-широтный способы регулирования выходной мощности резонансного инвертора напряжения для индукционного нагрева. – Известия СПбГЭТУ «ЛЭТИ», 2022, № 4, с. 49–55.

10. Bououd M. Mitigating Reverse Recovery Power Losses in MOSFET Switching Cell Using Extra Schottky Diodes – Application to Voltage Source Inverter. – Power Electronic Devices and Components, 2024, vol. 8, DOI: 10.1016/j.pedc.2024.100066.

11. Абдулхаков И.Ю. и др. Экспериментальное определение потерь в транзисторе резонансного инвертора напряжения. – Электричество, 2025, № 4, с. 44–52.

12. Hurley W.G., Wolfle W.H. Transformers and Inductors for Power Electronics: Theory, Design and Applications. Wiley, 2013, 456 p.

13. Mühlethaler J. et al. Improved Core Loss Calculation for Magnetic Components Employed in Power Electronic Systems. – IEEE Transactions on Power Electronics, 2012, vol. 27, No. 2, pp. 964–973.

14. Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. М.: Наука, 1975, 768 с.

15. Zumbahlen H. Staying Well Grounded. Analog Dialogue [Электрон. ресурс], URL: https://www.analog.com/en/analog-dialo-gue/articles/staying-well-grounded.html (дата обращения 24.07.2025).

16. Barrow J. Reducing Ground Bounce in DC/DC-Converter Applications [Электрон. ресурс], URL: https://www.edn.com/reducing-ground-bounce-in-dc-dc-converter-applications/ (дата обращения 24.07.2025).

17. Гончаренко И.В., Купин М.Н. Электромагнитная совместимость. М.: Издательское предприятие «РадиоСофт», 2018, 400 с.

18. Application Note: Toshiba. Simple Guide to Improving Ripple Rejection Ratio of LDO Regulators, 2021.

19. Teel J.C. Understanding Power Supply Ripple Rejection in Linear Regulators. – Texas Instruments Analog Applications Journal, 2005 [Электрон. ресурс], URL: https://www.ti.com/lit/pdf/slyt202 (дата обращения 24.07.2025).

20. Теверовский Л. Комплексное проектирование РЭА с использованием отечественной 3D-технологии [Электрон. ресурс], URL: https://www.cta.ru/articles/soel/2017/2017-9/115064/ (дата обращения 24.07.2025).

#

1. Zhang G. et al. Power Electronics Converters: Past, Present and Future. – Renewable and Sustainable Energy Reviews, 2018, vol. 81, pp. 2028–2044, DOI: 10.1016/j.rser.2017.05.290.

2. Hussein A.M.A., Marei M.I., Soliman M.H. Closed-Form Design Optimization for LLC Converters with Wide Output Voltage Range Based on FHA. – Scientific Reports, 2026, vol. 16, DOI: 10.1038/s41598-025-32640-4.

3. Adragna C. LLC Resonant Converters: An Overview of Modeling, Control and Design Methods and Challenges. – Now Publishers, 2022, DOI 10.1561/9781638280675.

4. Rafin S.M.S.H., Hussein H., Mohammed O.A. An Introduction to Power Electronics Design Methodology. – IEEE Design Methodologies Conference (DMC), 2023, DOI: 10.1109/DMC58182. 2023.10412603.

5. Chen Y. et al. A Comprehensive Review of LLC Resonant Converters in Renewable Energy Applications. – Energies, 2024, vol. 17, No. 7, DOI: 10.3390/en17071555.

6. Chen K.-H. et al. A PWM/PFM Dual-Mode DC-DC Buck Converter with Load-Dependent Efficiency-Controllable Scheme for Multi-Purpose IoT Applications. Electronics. 2021, vol. 10, No. 3, DOI: 10.3390/electronics10030347.

7. Vasil’ev A.S., Konrad G., Dzliev S.V. Istochniki pitaniya vysokochastotnyh elektrotermicheskih ustanovok: monografiya. T. 4 (Power Sources of High-Frequency Electrothermal Installations: Monograph. Vol. 4) Novosibirsk: Izd-vo NGTU, 2006, 426 p.

8. Dzliev S.V. Aktual’nye problemy teorii i praktiki induktsionnogo nagreva (APIH-2005) – in Russ. (Actual Problems of Theory and Practice of Induction Heating (APIH-2005)), 2005, pp. 363–369.

9. Abdulhakov I.Yu. Izvestiya SPbGETU «LETI» – in Russ. (Izvestiya SPbSETU "LETI"), 2022, No. 4, pp. 49–55.

10. Bououd M. Mitigating Reverse Recovery Power Losses in MOSFET Switching Cell Using Extra Schottky Diodes – Application to Voltage Source Inverter. – Power Electronic Devices and Components, 2024, vol. 8, DOI: 10.1016/j.pedc.2024.100066.

11. Abdulhakov I.Yu. et al. Elektrichestvo – in Russ. (Electricity), 2025, No. 4, pp. 44–52.

12. Hurley W.G., Wolfle W.H. Transformers and Inductors for Power Electronics: Theory, Design and Applications. Wiley, 2013, 456 p.

13. Mühlethaler J. et al. Improved Core Loss Calculation for Magnetic Components Employed in Power Electronic Systems. – IEEE Transactions on Power Electronics, 2012, vol. 27, No. 2, pp. 964–973.

14. Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya (Theory of Automatic Control Systems). M.: Nauka, 1975, 768 p.

15. Zumbahlen H. Staying Well Grounded. Analog Dialogue [Electron. resource], URL: https://www.analog.com/en/analog-dialogue/articles/staying-well-grounded.html (Accessed on 24.07.2025).

16. Barrow J. Reducing Ground Bounce in DC/DC-Converter Applications [Electron. resource], URL: https://www.edn.com/reducing-ground-bounce-in-dc-dc-converter-applications/ (Accessed on 24.07.2025).

17. Goncharenko I.V., Kupin M.N. Elektromagnitnaya sovmestimost’ (Electromagnetic Compatibility). M.: Izdatel’skoe predpriyatie «RadioSoft», 2018, 400 p.

18. Application Note: Toshiba. Simple Guide to Improving Ripple Rejection Ratio of LDO Regulators, 2021.

19. Teel J.C. Understanding Power Supply Ripple Rejection in Linear Regulators. – Texas Instruments Analog Applications Journal, 2005 [Electron. resource], URL: https://www.ti.com/lit/pdf/slyt202 (Accessed on 24.07.2025).

20. Teverovskiy L. Kompleksnoe proektirovanie REA s ispol’zovaniem otechestvennoy 3D-tehnologii (Integrated Design of REA Using Russian 3D Technology) [Electron. resource], URL: https://www.cta.ru/articles/soel/2017/2017-9/115064/ (Accessed on 24.07.2025)

Published

2026-02-14

Issue

Section

Article