Application of Integrated Windings in Homopolar Inductor Motors

  • Alexander Yu. SMIRNOV
  • Artem O. KASHKANOV
Keywords: inductor motor, integrated winding, externally closed magnetic core, tooth zone, stator bore, electromagnetic torque

Abstract

The article considers the design of a homopolar inductor machine excited from an integrated winding that concurrently produces the rotating armature magnetic field and the excitation field. The use of an integrated winding makes it possible to simplify the machine design, to decrease the consumption of insulation and structural steel, which simultaneously serves as part of the externally closed magnetic core for the passage of excitation flux in the axial-radial direction. The integrated winding distribution among the coil phases for the multiphase version is detailed, and the integral MMF distribution curve for the three-phase four-pole version of the winding is plotted. More accurate dependences for calculating the electromagnet torque of a motor with tooth structures on the rotor and stator are proposed that take into account the change of the gap permeance when the rotor is shifted by half the slot pitch. The torque values are substituted in the Arnold constant equations for determining the bore diameter in designing. A formula for estimating the thermal state of the machine with an integrated winding is given. A conclusion about the possible application fields of homopolar inductor motors with the integrated winding has been drawn: for operation in repeated short-term modes, when there is a need to force the torque, and when used in combination with a permanent-magnet machine on a common shaft.

Author Biographies

Alexander Yu. SMIRNOV

SMIRNOV Alexander Yu. (N. Novgorod State Technical University named R.Ye. Alekseyev, Russia) — Associate Professor, Dr. Sci. (Eng.)

Artem O. KASHKANOV

KASHKANOV Artem O. (Volga State University of Water Transport, N. Novgorod, Russia) – Ph. D.-student

References

1. Бут Д.А. Бесконтактные электрические машины: Учебное пос. для электромеханических и электроэнергетических втузов. М.: Высшая школа, 1985, 255 с.
2. Арменский Е.В., Фалк Г.Б. Электрические микромаши- ны: Учебное пос. для электротехнических вузов. М.: Высшая школа, 1985, 231 с.
3. Смирнов А.Ю. Индукторные машины. Проектирование и вычислительный анализ (спец. курс). М.: Изд-во Форум, 2015,192 с.
4. Смирнов А.Ю., Зимин А.Ю. Проектирование одно- имённо-полюсных индукторных двигателей с постоянными магнитами на роторе. – Электричество, 2015, № 2, с. 54—59.
5. Иванов-Смоленский А.В. Электрические машины: Учеб- ник для вузов. М.: Энергия, 1980, 928 с.
6. Гольдберг О.Д., Гурин Я.С., Свириденко И.С. Проектиро- вание электрических машин. М.: Высшая школа, 1984, 431 с.
#
1. But D.A. Beskontaktnye electricheskiye mashiny (Contactless electrical machines). Moscow, Vysshaya shkola, 1985, 255 p.
2. Armenskiy E.V., Falk G.B. Electricheskiye mikromashiny (Electrical micromachines). Moscow, Vysshaya shkola, 1985, 231 p.
3. Smirnov A.Yu. Inductornye mashiny. Proektirovaniye i vichislitel’nyi analiz (spets. kurs) (Inductor machines. Design and computational analysis (special rate). Moscow, Forum, 2015, 192 p.
4. Smirnov A.Yu., Zimin A.Yu. Elektrichestvo – in Russ. (Electrisity), 2015, No 2, pp. 54—59.
5. Ivanov-Smolenskiy A.V. Electricheskiye mashiny (Electrical machines). Moscow, Energiya, 1980, 928 p.
6. Goldberg O.D., Gurin Ya.S., Sviridenko I.S. Proektirovaniye electricheskikh mashin (Design of electric machines). Moscow, Vysshaya shkola, 1984, 431 p.
Published
2019-09-01
Section
Article