Studying the Controlled Flexible Coupling of the Micro HPP Turbine and Generator Operating in a Self-Contained Electric Power System
Abstract
Studies aimed at ensuring synchronous parallel operation of permanent magnet generators of a micro HPP in a self-contained power system that use a controlled flexible coupling between the turbine and generator were carried out. The need of carrying out this study is stemming, among other things, from the problem of ensuring electromechanical compatibility during parallel operation of generators having different parameters of the mechanical inertia time constants of electrical machine rotors. Possible versions of solving this problem are reviewed, and their advantages and drawbacks are analyzed. The concept based on using a controlled flexible coupling between the generator and turbine is proposed as a promising solution of this problem. The mathematical models of the system are presented, and the laws and algorithms for automatically controlling the generator rotation frequency are drawn up. The simulation and physical modeling oscillograms presented in the article show how synchronous parallel operation of permanent magnet synchronous generators is maintained in a self-contained electric power system under the conditions of a three-phase short-circuit fault in points located at different electrical distances.
References
2. Li J., Yang Q., Yao P., Sun Q., Zhang Z., Zhang M., & Yuan
W. A Novel use of the Hybrid Energy Storage System for Primary Frequency Control in a Microgrid. Energy Procedia, 2016, 103, pp. 82-87.
3. Глазырин Г.В., Казанцев Ю.В. Опережающее регулирование частоты и мощности на гидроэлектростанциях в изолированных энергосистемах. — Новое в российской электроэнергетике, 2017, № 11, c. 20—27.
4. Лукутин Б.В., Обухов С.Г., Шандарова Е.Б. Автономное электроснабжение от микрогидроэлектростанций. — Томск: STT, 2001, т. 120.
5. Данилевич Я.Б., Антипов В.Н., Штайнле Л.Ю. Гидрогенератор для малой ГЭС с возбуждением от постоянных магнитов. — Научно-технические ведомости Санкт-Петербургского государственного политехнического университета, 2009, № 84, с. 11—13.
6. Антипов В.Н. и др. Оценка эффективности конструктивного исполнения постоянных магнитов для низкоскоростных синхронных генераторов на основе расчета магнитного поля. — Электротехника, 2014, № 2, с. 2—5.
7. Удалов С.Н. и др. Повышение регулировочной способности ветроэнергетической установки в составе локальной энер- госистемыю — Энергобезопасность и энергосбережение, 2017, № 3, с. 33—40.
8. Голов П.В., Шаров Ю.В., Строев В.А. Система математических моделей для расчета переходных процессов в сложных электроэнергетических системах. — Электричество, 2007, № 5, с. 2—11.
9. Зиновьев Г.С. Основы силовой электроники. Новосибирск: Изд-во Новосибирского гос. технического университета, 2003, 664 с.
10. Chen Z., Guerrero J. M., Blaabjerg F. A review of the state of the art of power alectronics for wind turbines. — IEEE Trans. Power Electron., 2009, vol. 24, No. 8, pp. 1859—1975. Electrichestvo, 2020, No. 1, pp. 25—31
11. Cardenas R., Pena R., Alepuz S., Asher G. Overview of control systems for the operation of DFIGs in wind energy applications. — IEEE Trans. Ind. Electron., 2013, vol. 60, No. 7, pp. 2776—2798.
12. Udalov S.N. et al. Increasing the regulating ability of a wind turbine in a local power system using magnetic continuous variable transmission. — Wind Engineering, 2018, vol. 42, No. 5, c. 411—435.
13. Morren J. and de Haan S.W.H. Ride through of wind turbinеs with dоublyfed induction gеnerаtor during a voltage dip. — IEEE Trans. Energy Convers., 2005, vol. 20, No. 2, pp. 435—441.
14. Wessels C., Gebhart F., Fuchs R.W. Fault ride-through of a DFIG wind turbina using a dynamic voltage restorer during symmetrical and asymmetrical grid faults. — IEEE Trans. Power Elеctron., 2011, vol. 26, No. 3, pp. 807—815.
15. Hansen A.D. and Michalke G. Fault ride-through capability of DFIG wind turbines. — Renew. Energy, 2007, vol. 32, No. 9, pp. 1594—1610.
16. Pannell G., Atkinson D.J., Zahawi B. Minimum-threshold crowbar for a fault-ide-through grid-code-compliant DFIG wind turbine. — IEEE Trans. Energy Convers., 2010, vol. 25, No. 3, pp. 750—759.
17. Huang H. et al. Electronic power transformer control strategy in wind energy conversion systems for low voltage ride-through capability enhancement of directly driven wind turbines with permanent magnet synchronous generators (D-PMSGs). — Energies, 2014, vol. 7, No. 11, pp. 7330—7347.
18. Kranawetter K. et al. Control-Oriented Modelling of the Transient Behaviour of Hydrodynamic Couplings: A State-Space Approach. — 2018 Annual American Control Conference (ACC), 2018, pp. 2940—2945.
#
1. Ling Y. The fault ride through technologies for doubly fed induction generator wind turbines. — Wind Engineering, 2016, vol. 40, No. 1, pp. 31-49.
2. Li J., Yang Q., Yao P., Sun Q., Zhang Z., Zhang M., & Yuan W. A Novel use of the Hybrid Energy Storage System for Primary Frequency Control in a Microgrid. Energy Procedia, 2016, 103, pp. 82-87.
3. Glazyrin G.V., Kazantsev Yu.V. Novoye v rossiyskoy elektroenergetike — in Russ. (New in Russian electric power industry), 2017, №. 11, pp. 20-27.
4. Lukutin B.V., Obukhov S.G., Shandarova Ye.B. Avtonomnoye elektrosnabzheniye ot mikrogidroelektrostantsii (Autonomous power supply from micro-hydro power plants). Tomsk: STT, 2001, т. 120.
5. Danilevich Ya.B., Antipov V.N., Shtaynle L.Yu. Nauchno-tekhnicheskiye vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta — in Russ. (Scientific and Technical Journal of St. Petersburg State Polytechnic University), 2009, No. 84, pp. 11-13.
6. Antipov V.N. et al. Elektrotekhnika — in Russ. (Electrical Engineering), 2014, No. 2, pp. 2-5.
7. Udalov S.N. et al. Energobezopasnost’ i energosberezheniye — in Russ. (Energy Security and Energy Saving), 2017, No. 3, pp. 33-40.
8. Golov P.V., Sharov Yu.V., Stroyev V.A. Elektrichestvo — in Russ. (Electricity), 2007, No. 5, pp. 2-11.
9. Zinov’yev G.S. Osnovy silovoy elektroniki (Fundamentals of power electronics). Novosibirsk: Publ. House of NSTU, 2003, 664 p.
10. Chen Z., Guerrero J.M. and Blaabjerg F. A review of the state of the art of power electronics for wind turbines. - IEEE Trans. Power Electron., 2009, vol. 24, No. 8, pp. 1859-1975.
11. Cardenas R., Pena R., Alepuz S. and Asher G. Overview of control systems for the operation of DFIGs in wind energy applications. - IEEE Trans. Ind. Electron., 2013, vol. 60, No. 7, pp. 2776-2798.
12. Udalov S.N. et al. Increasing the regulating ability of a wind turbine in a local power system using magnetic continuous variable transmission. - Wind Engineering, 2018, vol. 42, No. 5, c. 411-435.
13. Morren J. and de Haan S.W.H. Ride through of wind turbines with doublyfed induction generator during a voltage dip. - IEEE Trans. Energy Convers., 2005, vol. 20, No. 2, pp. 435-441.
14. Wessels C., Gebhart F. and Fuchs R.W. Fault ride-through of a DFIG wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults. - IEEE Trans. Power Electron., 2011, vol. 26, No. 3, pp. 807-815.
15. Hansen A.D. and Michalke G. Fault ride-through capability of DFIG wind turbines. - Renew. Energy, 2007, vol. 32, No. 9, pp. 1594-1610.
16. Pannell G., Atkinson D.J. and Zahawi B. Minimum-threshold crowbar for a fault-ide-through grid-code-compliant DFIG wind turbine. - IEEE Trans. Energy Convers., 2010, vol. 25, No. 3, pp. 750-759.
17. Huang H. et al. Electronic power transformer control strategy in wind energy conversion systems for low voltage ride-through capability enhancement of directly driven wind turbines with permanent magnet synchronous generators (D-PMSGs). - Energies, 2014, vol. 7, No. 11, pp. 7330-7347.
18. Kranawetter K. et al. Control-Oriented Modelling of the Transient Behaviour of Hydrodynamic Couplings: A State-Space Approach. - 2018 Annual American Control Conference (ACC), 2018, pp. 2940-2945.