Title Applying the Pentagram for Structuring the Process of Studying Electrical Device
Abstract
Faster emergence and introduction of the new technologies in the modern world requires changes in the field of engineering education. Large volumes of knowledge must be transferred in a shorter time. In this paper, an alternative view on structuring the process of studying electrical devices is presented, using electrical machines and frequency converters as the examples. It is proposed to use the set of logical blocks, graphically described by a pentagram — a well-known symbol and a geometric figure — for the organization and transfer of the knowledge. It is assumed that this method of knowledge transfer will be more efficient in terms of the time required. A pentagram is a set of related logical, locks that describes a set of physical processes, effects, their connections with each other and, probably, even the philosophy of building the electrical devices.
References
2. РугИциеп J., Jokinen T., Hrabovov6 V. Design of rotating electrical machines. John Wiley & Sons, 2008, 612 р.
3. Sadarangani C. Electrical machines: design and analysis of induction and permanent magnet motors. School of Electrical Engineering, Royal Inst. of Technology, 2006, 665 р.
4. Chapman S. Electric machinery fundamentals. McGraw Hill, Fourth ed., 2005, 746 р.
5. Miller T.J.E. Switched reluctance motors and their control. Magna Physics, 1993, 200 р.
6. Hendershot J.R., Miller T.J.E. Design of brushless permanent-magnet motors. Magna Physics Pub., 1994, 822 р.
7. Hanselmann D.C. Brushless permanent-magnet motor design. First ed. New York: McGraw-Hill, Inc., 1994, 392 р.
8. Gieras J., Wing M. Permanent magnet motor technology. Design and applications. Second ed. Marcel Dekker, Inc, 2002, 590 р.
9. Delaere K., Tenhunen A., Heylen W., Hameyer K., Belmans R. Predicting the stator vibration spectrum of induction machines under normal operation. Proceedings of the 1st European Conference on Launcher Technology: launch vehicle vibrations, 1999, pp. 700—709.
10. Ильинский Н.Ф., Козаченко В.Ф. Общий курс электропривода. М.: Энергоатомиздат, 1992, 544 с.
11. Mohan N., Undeland T.M., Robbins W.P. Power electronics: converters, applications, and design. John Wiley & Sons, 2003, 802 с.
#
1. Ivanov-Smolenskiy A.V. Elektricheskiye mashiny (Electric cars). Moscow, Energiya, 1980, 927 p.
2. Pyrhunen J., Jokinen T., Hrabovov V. Design of rotating electrical machines. John Wiley & Sons, 2008, 612 р.
3. Sadarangani C. Electrical machines: design and analysis of induction and permanent magnet motors. School of Electrical Engineering, Royal Inst. of Technology, 2006, 665 р.
4. Chapman S. Electric machinery fundamentals. McGraw Hill, Fourth ed., 2005, p. 746.
5. Miller T.J.E. Switched reluctance motors and their control. Magna Physics, 1993, 200 p.
6. Hendershot J.R., Miller T.J.E. Design of brushless permanent-magnet motors. Magna Physics Pub., 1994, 822 p.
7. Hanselmann D.C. Brushless permanent-magnet motor design. First ed. New York: McGraw-Hill, Inc., 1994, 392 р.
8. Gieras J., Wing M. Permanent magnet motor technology. Design and applications. Second ed. Marcel Dekker, Inc, 2002, 590 р.
9. Delaere K., Tenhunen A., Heylen W., Hameyer K., Belmans R. Predicting the stator vibration spectrum of induction machines under normal operation. Proceedings of the 1st European Conference on Launcher Technology: launch vehicle vibrations, 1999, pp. 700—709.
10. Il’inskiy N.F. Obshchiy kurs elektroprivoda (General course of electric drive). Moscow, Energoatomizdat, 1992, 544 p.
11. Mohan N., Undeland T.M., Robbins W.P. Power electronics: converters, applications, and design. John Wiley & Sons, 2003, 802 р.