The Mathematical Models of a Saturated Induction Machine in Polar Coordinates
Abstract
This study is aimed at filling a certain gap in the mathematical modeling of steady-state and transient processes in induction machines. A set of mathematical models written in polar coordinates that take into account the machine main magnetic circuit saturation is proposed. For solving the formulated problems, methods of the complex variable theory were used. The proposed mathematical models were implemented by means of software, and the processes simulated using them were investigated in the MATLAB computation environment (using the SIMULINKpackage of application computer programs). Two versions of induction machine mathematical models written in polar coordinates are presented, which take into account saturation of the main magnetic circuit and differ from each other in the set of machine state variables. The specific features of implementing such models by means of software are determined. It has been found that these models describe the processes in an induction machine in the working part of its mechanical characteristic with sufficient accuracy. It is shown that the mathematical models written in polar coordinates simulate the processes in an induction machine on the whole with the same accuracy as the widely used similar models written in the Cartesian coordinates. At the same time, by using the models written in polar coordinates, it is possible to observe induction machine state variables that cannot be observed in the case of using the mathematical models written in the Cartesian coordinates.
References
2. Okoro O. Dynamic modelling and simulation of squirrel-cage asynchronous machine with non-linear effects. — Journal of ASTM International, 2005, vol. 2, No. 6, pp. 1 — 16.
3. Ansari A.A., Deshpande D.M. Mathematical Model of Asynchronous Machine in MATLAB Simulink. — International Journal of Engineering Science and Technology, 2010, vol. 2(5), pp. 1260-1267.
4. Boora1 Shakuntla, Agarwal S.K., Sandhu K.S. Dynamic d-q axis modeling of three-phase asynchronous machine using Matlab. — International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2013, vol. 2, iss. 8, pp. 3942—3951.
5. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. Екатеринбург: УРО РАН, 2000, 654 с.
6. Шрейнер Р.Т., Дмитренко Ю.А. Оптимальное частотное управление асинхронными электроприводами/Под ред. Н.Н. Мурашовой, Е.Б. Татариновой. Кишинев: Штиница, 1982, 224 с.
7. Panasjuk A.I., Panasjuk V.I., Jakubovich L.O. Differential equations of asynchronous maschine, «22 Int. Wis. Kollog. Techn. Hochsch. Ilmenau, 1977. Ht2», pp. 111—114.
8. Федоренко А.А., Лазовский Э.Н. Математические модели асинхронной машины с короткозамкнутым ротором в цилиндрической (полярной) системе координат. — Изв. вузов. Электромеханика, 2012, № 5, с. 29—35.
9. Федоренко А.А., Лазовский Э.Н., Печатнов М.А. Уравнения динамики асинхронной машины, инвариантные к скорости вращения системы координат. — Изв. Томского политехнического университета, 2012, т. 320, № 4, с. 142—146.
10. Асинхронные двигатели серии 4А. Справочник/А.Э. Кравчик, М.М. Шлаф, В.И. Афонин и др. М.: Энергоиздат, 1982, 504 с.
11. Лазовский Э.Н., Пантелеев В.И., Пахомов А.Н., Федоренко А.А. Математическая модель асинхронной машины в полярных координатах с учетом вытеснения тока ротора. — Электричество, 2017, № 5, c. 28—33.
#
1. Usol’tsev A.A. Chastotnoye upravleniye asinkhronnymi dvigatelyami: Uchebnoye pos. dlya vuzov (Frequency control of induction motors: Educational pos. for universities). St. Petersburg, SPbGUITMO, 2006, 94 p.
2. Okoro O. Dynamic modelling and simulation of squirrel-cage asynchronous machine with non-linear effects. — Journal of ASTM International, 2005, vol. 2, No. 6, pp. 1—16.
3. Ansari A.A., Deshpande D.M. Mathematical Model of Asynchronous Machine in MATLAB Simulink. — International Journal of Engineering Science and Technology, 2010, vol. 2(5), pp. 1260-1267.
4. Booral Shakuntla, Agarwal S.K., Sandhu K.S. Dynamic d-q axis modeling of three-phase asynchronous machine using Matlab. — International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2013, vol. 2, iss. 8, pp. 3942—3951.
5. Shreyner R.T. Matematicheskoye modelirovaniye elektroprivodov peremennogo toka s poluprovodnikovymi preobrazovatelyami chastoty (Mathematical modeling of AC drives equipped with semiconductor frequency converters). Yekaterinburg: Ural Branch of the Russian Academy of Sciences), 2000, 654 p.
6. Shreyner R.T., Dmitrenko Yu.A. Optimal’noye chastotnoye upravleniye asinkhronnymi elektroprivodami/Pod red. N.N. Murashovoi, Ye.B. Tatarinovoi (Optimal frequency control of induction electric drives/Ed. N.N. Murashova, Ye.B. Tatarinova). Kishinev, Shtinitsa, 1982, 224 p.
7. Panasjuk A.I., Panasjuk V.I., Jakubovich L.O. Differential equations of asynchronous maschine, «22 Int. Wis. Kollog. Techn. Hochsch. Ilmenau, 1977. Ht2», pp. 111—114.
8. Fedorenko A.A., Lazovskiy E.N. Izv. vuzov. Elektromekhanika — in Russ. (News of higher educational establishments. Electromechanics), 2012, No. 5, pp. 29—35.
9. Fedorenko A.A., Lazovskiy E.N., Pechatnov M.A. Izv. Tomskogo politekhnicheskogo universiteta — in Russ. (News of Tomsk Polytechnic University), 2012, vol. 320, No. 4, pp. 142—146.
10. Asinkhronnye dvigateli serii 4A. Spravochnik/A.E. Kravchik, M.M. Shlaf, V.I. Afonin i dr. (4A series induction motors. Reference book / A.E. Kravchik, M.M. Schlaf, V.I. Afonin et al.). Moscow, Energoizdat, 1982, 504 p.
11. Lazovskiy Ye.N., Panteleyev V.I., Pakhomov A.N., Fedorenko A.A. Elektrichestvo — in Russ. (Electricity), 2017, No. 5, pp. 28—33.