Numerical Simulation of the Dynamic Operation Mode of a Laboratory Shaker Linear Electromagnetic Motor

  • Alexander S. IVANOV
  • Yeugene M. SHITOV
  • Aleksey Yu. MIL’SHIN
  • Vyacheslav O. KNYAZEV
  • Anton O. SIDOROV
Keywords: linear electromagnetic motor, laboratory shaker, pulling force, simulation, dynamic characteristics, finite element method

Abstract

The design of the laboratory shaker linear electric drive mechanical part is proposed, its mathematical model is given, and the algorithm for calculating the linear electromagnetic motor’s dynamic characteristics is presented. Computer simulation of the drive is carried out using the COMSOL Multiphysics finite element modeling software. The dynamic operation mode of the motor’s reciprocating motion is studied, and its dynamic (speed-torque) characteristics are given. The study results have shown that the laboratory shaker drive based on a linear electromagnetic motor has properties commensurable with those of the drive for serially produced shakers. Moreover, in regard of certain indicators, such as the maximum oscillation frequency and peak power consumtion, the newly designed drive has better characteristics.

Author Biographies

Alexander S. IVANOV

IVANOV Alexander S. (National Research University «Moscow Power Engineering Institute», Moscow, Russia) —Associate Professor, Cand. Sci. (Eng.)

Yeugene M. SHITOV

SHITOV Yeugene M. (JSC «R-FARM», Moscow, Russia) — Senior Engineer, Cand. Sci. (Eng.)

Aleksey Yu. MIL’SHIN

MIL’SHIN Aleksey Yu. (JSC «R-FARM», Moscow, Russia) —Head of Medical Equipment Service

Vyacheslav O. KNYAZEV

KNYAZEV Vyacheslav O. (LLC «Tekhbezopasnost’», Moscow, Russia) —Test Engineer

Anton O. SIDOROV

SIDOROV Anton O. (JSC «Corporation «VNIIEM», Moscow, Russia) — Ingineer

References

1. Мошкин В.И., Нейман В.Ю, Угаров Г.Г. Импульсные линейные электромагнитные двигатели. Курган: Курганский государственный университет, 2010, 220 с.
2. Патент на изобретение US6579002. Broad-range large-load fast-oscillating high-performance reciprocating programmable laboratory shaker/ D.Bartick, B.Bartick, 2003, 22 p.
3. Патент на изобретение US5593228. Rotary shaker with flexible strap suspension/M. Tannenbaum, 1997, p. 10.
4. Ряшенцев Н.П, Тимошенко Е.М, Фролов А.В. Теория, расчет и конструирование электромагнитных машин ударного действия. Новосибирск: Наука. Сиб. отделение, 1970, 260 с.
5. Горизонтальные шейкеры фирмы «Экрос аналитика» [Электрон. ресурс] http://eco-analytika.com/produkciya-ekros/ shejker-laboratornyj (дата обращения 18.10.2019).
6. Старостин А.Г. Методы проектирования электромагнитных механизмов постоянного тока с заданными динамическими параметрами: Автореф. дис.... канд. техн. наук. — Новочер­касск: Южно-Российский государственный технический университет, 2006, 234 с.
7. Фисенко В.Г. Численные расчеты электромагнитных полей в электрических машинах на основе метода конечных элементов. М.: Изд-во МЭИ, 2002, 44 с.
8. Любчик М.А. Силовые электромагниты аппаратов и устройств автоматики постоянного тока (расчет и элементы проектирования). М.: Энергия, 1968, 152 с.
9. Сливинская А.Г. Электромагниты и постоянные магниты: Учебное пос. для студентов вузов. М.: Энергия, 1972, 248 с.
10. Могилевский Г.В. К расчету тяговых сил в электромагнитах. — Вестник Электропромышленности, 1960, № 4, с. 67—70.
#
1. Moshkin V.I., Neyman V.Yu, Ugarov G.G. Impul’snyye lineynyye elektromagnitnyye dvigateli (Pulsed linear electromagnetic motors). Kurgan: Kurganskiy gosudarstvennyy universitet, 2010, 220 p.
2. Patent na izobreteniye US6579002. Broad-range large-load fast-oscillating high-performance reciprocating programmable laboratory shaker/D.Bartick, B. Bartick (Patent for invention US6579002. Broad-range large-load fast-oscillating high-performance reciprocating programmable laboratory shaker/Bartick D., Bartick B.), 2003, 22 p.
3. Patent na izobreteniye US5593228. Rotary shaker with flexible strap suspension/M. Tannenbaum (Patent for invention US5593228. Rotary shaker with flexible strap suspension/M. Tannenbaum). 1997, p. 10.
4. Ryashentsev N.P, Timoshenko Ye.M, Frolov A.V. Teoriya, raschet i konstruirovaniye elektromagnitnykh mashin udarnogo deystviya (Theory, calculation and design of electromagnetic shock machines). Novosibirsk, Nauka. Sib. otdeleniye, 1970, 260 p.
5. Gorizontal’nyye sheykery firmy «Ekros analitika» (Horizontal shakers from Ecros Analytics) [Electron. resource] http://eco-analytika.com/produkciya-ekros/shejker-laboratornyj (data of apple 18.10.2019).
6. Starostin A.G. Metody proyektirovaniya elektromagnitnykh mekhanizmov postoyannogo toka s zadannymi dinamicheskimi parametrami. Avtoref. dis.... kand. tekhn. nauk (Design methods for electromagnetic DC mechanisms with specified dynamic parameters. Abstract. dis .... Cand. tech. sciences). Novocherkassk, Yuzhno- Rossiyskiy gosudarstvennyy tekhnicheskiy universitet, 2006, 234 p.
7. Fisenko V.G. Chislennyye raschety elektromagnitnykh poley v elektricheskikh mashinakh na osnove metoda konechnykh elementov (Numerical calculations of electromagnetic fields in electric machines based on the finite element method). Moscow, Publ.of MEI, 2002, 44 p.
8. Lyubchik M.A. Silovyye elektromagnity apparatov i ustroystv avtomatiki postoyannogo toka (raschet i elementy proyektirovaniya) (Power electromagnets of apparatuses and devices for DC automation (calculation and design elements). Moscow, Energiya, 1968, 152 p.
9. Slivinskaya A.G. Elektromagnity i postoyannyye magnity. Uchebnoye posobiye dlya studentov vuzov (Electromagnets and permanent magnets. Textbook for university students). M.: Energiya, 1972, 248 p.
10. Mogilevsky G.V. Vestnik Elektropromyshlennosti — in Russ. (Bulletin of the Electric Industry), 1960, No. 4, pp. 67—70.
Published
2020-05-01
Section
Article