AC loss analysis in 2G HTS coils and their parts

  • Sergey Ju. ZANEGIN
  • Vasily V. ZUBKO
  • Nikolay S. IVANOV
Keywords: high temperature superconductors, electrical machine, AC losses in HTS coils

Abstract

The model coil with the racetrack geometry based on second generation High Temperature Superconducting tapes has been developed for an electrical machine where a winding pack is a stack of 2G HTS tapes. It is important to evaluate transport current AC losses and possible methods to reduce them in a winding. In a device made of 2G HTS tapes, the main the AC losses are the hysteresis ones. Only numerical simulation permits to predict them in full. The FEM model for calculation of the hysteresis losses developed before for 2G HTS power cables was modified for a stack of the 2G HTS tapes in a coil. In this paper the methods to increase a computational speed are presented. Possible ways to reduce AC losses are discussed also. The details of the model and comparisons of calculations with measurements of the AC loss are presented.

Author Biographies

Sergey Ju. ZANEGIN

ZANEGIN Sergey Ju. (JSC «All-Russian Research Institute of Cable Industry» — ARICI, Moscow, Russia) — Engineer, Postgraduate Student of NRU «MAI»

Vasily V. ZUBKO

ZUBKO Vasily V. (JSC «ARICI», Moscow, Russia) — Leading Scientist, Dr. Sci. (Eng.)

Nikolay S. IVANOV

IVANOV Nikolay S. (JSC «ARICI», Moscow, Russia) — Senior Scientist of Electric Power, Electromechanical and Biotrchnological Systems Dept., Cand. Sci. (Eng.)

References

1. Sirois F., Grilli F. Potential and limits of numerical modelling for supporting the development of HTS devices, Supercond. Sci. and Technol., 2015, vol. 28, No. 4, p. 043002.
2. Grilli F. Numerical Modelling of HTS Applications — IEEE Trans. on Appl. Supercond. 2016, vol. 26, No. 3, p. 0500408.
3. Grilli F., Pardo E., Stenvall A., Nguyen D., Yuan W., Gцmцry F. Computation of Losses in HTS Under the Action of Varying Magnetic Fields and Currents — IEEE Trans. on Appl. Supercond., 2014, vol. 24, No. 1, p. 8200433.
4. Gu C., Qu T., Li X., Han Z. AC Losses in HTS Tapes and Devices With Transport Current Solved Through the Resistivity-Adaption Algorithm, — IEEE Trans. Appl. Supercond., 2013, vol. 23, No. 2, p. 8201708.
5. Hong Z., Yuan W., Ainslie M., Yan Y., Pei R., Coombs T. AC losses of superconducting racetrack coil in various magnetic conditions, — IEEE Trans. Appl. Supercond., 2011, vol. 21, No. 3, p. 2466.
6. Qufival L., Zerme^ V., Grilli F. Numerical models for ac loss calculation in large-scale applications of HTS coated conductors, Supercond. Sci. Technol., 2016, vol. 29, No. 2, p. 24007.
7. Prigozhin L., Sokolovsky V. Computing AC losses in stacks of high-temperature superconducting tapes, Supercond. Sci. Technol., 2011, vol. 24, No. 7, p. 075012.
8. Pardo E., Souc J., Frolek L. Electromagnetic modelling of superconductors with a smooth current— voltage relation: variational principle and coils from a few turns to large magnets, Supercond. Sci. Technol., 2015, vol. 28, p. 044003.
9. Bykovsky N., Uglietti D., Wesche R., Bruzzone P. Design of the HTS fusion conductors for TF and CS coils — IEEE Trans. Appl. Supercond., 2015, vol. 25, p. 4800304.
10. ANSYS Multiphysics, Release 15, ANSYS Inc.
11. Zubko V., Fetisov S., Vysotsky V. Hysteresis Losses Analysis in 2G HTS cables — IEEE Trans. Appl. Supercond., 2016, vol. 26, No 3, p. 8202005.
12. Зубко В., Высоцкий В., Фетисов С., Носов А., Занегин С. Анализ гистерезисных потерь в силовых кабелях на основе вы­сокотемпературно-сверхпроводящих лент второго поколения. — Электричество. 2014. № 4, с. 24-32.
13. Zubko V., Nosov A., Polyakova N., Fetisov S., Vysotsky V. Hysteresis Loss in Power Cables Made of 2G HTS Wires with NiW Alloy Substrate — IEEE Trans. Appl. Supercond., 2011, vol. 21, №. 3, pp. 988-990.
14. Zhang X., Zhong Z., Ruiz H., Geng J., Coombs T. General approach for the determination of the magneto-angular dependence of the critical current of YBCO coated conductors, Supercond. Sci. Technol., 2017, vol. 30, p. 025010.
15. Norris W. Calculation of hysteresis loss in hard superconductors carrying ac: isolated conductors and edges of thin sheet — Journal of Physics D., 1970, vol. 3, pp. 489-495.
16. Zanegin S., Ivanov N., Shishov D., Shishov I., Kovalev K., Zubko V. Manufacturing and Testing of AC HTS-2 Coil for Small Electrical Motor – Journal of Supercond. Novel Magnet, 2019, DOI: 10.1007/s10948-019-05226-1.
#
1. Sirois F., Grilli F. Potential and limits of numerical modelling for supporting the development of HTS devices, Supercond. Sci. and Technol., 2015, vol. 28, No. 4, p. 043002.
2. Grilli F. Numerical Modelling of HTS Applications - IEEE Trans. on Appl. Supercond. 2016, vol. 26, No. 3, p. 0500408.
3. Grilli F., Pardo E., Stenvall A., Nguyen D., Yuan W., Gцmцry F. Computation of Losses in HTS Under the Action of Varying Magnetic Fields and Currents — IEEE Trans. on Appl. Supercond., 2014, vol. 24, No. 1, p. 8200433.
4. Gu C., Qu T., Li X., Han Z. AC Losses in HTS Tapes and Devices With Transport Current Solved Through the Resistivity-Adaption Algorithm. — IEEE Trans. Appl. Supercond., 2013, vol. 23, No. 2, p. 8201708.
5. Hong Z., Yuan W., Ainslie M., Yan Y., Pei R., Coombs T. AC losses of superconducting racetrack coil in various magnetic conditions. — IEEE Trans. Appl. Supercond., 2011, vol. 21, No. 3, p. 2466.
6. Qufival L., Zermew V., Grilli F. Numerical models for ac loss calculation in large-scale applications of HTS coated conductors, Supercond. Sci. Technol., 2016, vol. 29, No. 2, p. 24007.
7. Prigozhin L., Sokolovsky V. Computing AC losses in stacks of high-temperature superconducting tapes, Supercond. Sci. Technol., 2011, vol. 24, No. 7, p. 075012.
8. Pardo E., Souc J., Frolek L. Electromagnetic modelling of superconductors with a smooth current— voltage relation: variational principle and coils from a few turns to large magnets, Supercond. Sci. Technol., 2015, vol. 28, p. 044003.
9. Bykovsky N., Uglietti D., Wesche R., Bruzzone P. Design of the HTS fusion conductors for TF and CS coils — IEEE Trans. Appl. Supercond., 2015, vol. 25, p. 4800304.
10. ANSYS Multiphysics, Release 15, ANSYS Inc.
11. Zubko V., Fetisov S., Vysotsky V. Hysteresis Losses Analysis in 2G HTS cables — IEEE Trans. Appl. Supercond., 2016, vol. 26, No. 3, p. 8202005.
12. Zubko V., Vysotsky V., Fetisov S., Nosov A., Zanegin S. Elektrichestvo — in Russ. (Electrisity), 2014, No. 4,pp. 24—32.
13. Zubko V., Nosov A., Polyakova N., Fetisov S., Vysotsky V. Hysteresis Loss in Power Cables Made of 2G HTS Wires with NiW Alloy Substrate — IEEE Trans. Appl. Supercond., 2011, vol. 21, No. 3, pp. 988—990.
14. Zhang X., Zhong Z., Ruiz H., Geng J., Coombs T. General approach for the determination of the magneto-angular dependence of the critical current of YBCO coated conductors, Supercond. Sci. Technol., 2017, vol. 30, p. 025010.
15. Norris W. Calculation of hysteresis loss in hard superconductors carrying ac: isolated conductors and edges of thin sheet — Journal of Physics D., 1970, vol. 3, pp. 489—495.
16. Zanegin S., Ivanov N., Shishov D., Shishov I., Kovalev K., Zubko V. Manufacturing and Testing of AC HTS-2 Coil for Small Electrical Motor — Journal of Supercond. Novel Magnet, 2019, DOI: 10.1007/s10948-019-05226-1.
Published
2020-05-01
Section
Article