On the Modern Solutions on Combined Machinery and Electronic Generating Systems for Small-Scale Power Facilities and Movable Objects
Abstract
It is often believed that wind energy today is not always a profitable (in business terms) electricity generating technology. There is no doubt, however, that this environmentally clean technology with an inexhaustible resource implies its widespread use not only in the near future, but also nowadays under the appropriate conditions. In the final analysis, the interests of national security play a decisive role here, and, hence, the priority in solving the problem of power supply availability and the country’s security through the development of small-scale power generation (including, above all, the development of wind and hydropower industries) remains to be decided at the state level. Higher reliability of autonomous power supply (APS) and the renewable nature of energy resources used by it are the factors determining the fundamental difference between the APS for geographically dispersed consumers that are located far away from centralized power lines. The first design-and-organizational objective, which should be addressed in a particular country, is to compile a map of the distribution of wind and hydropower resources, based on which the advisability of using this technology should be analyzed. The second objective is to use the most rational technical solutions for wind (hydro) electrical installations. The article considers the structures of alternative versions of installations that are presented only by a comprehensive electrical package in the form of a combined machine-and-electronic generating system of the «variable speed-constant frequency» type. Synchronous and asynchronous machines are considered as converters of mechanical energy into electrical energy. The second version implies the use of induction machines with a squirrel-cage rotor and with a phase rotor. The mechanical energy converters operate jointly with an electronic frequency converter, which can be embodied as two series-connected four-quadrant converters. The article presents a brief comparative analysis of five wind turbine structures operating autonomously and in parallel with the grid. The results of computer simulation of the most rational options are presented. The aim of the study is to give an idea to the developers about the modern solutions for constructing comprehensive electrical packages for wind power systems and to simplify the procedure of selecting the most rational solution.
References
1. Elektrooborudovaniye letatel’nykh apparatov Т. 1. Sistemy elektrosnabzheniya letatel’nykh apparatov (Electrical equipment of aircraft, vol. 1. Power supply systems for aircraft / Ed. S.A. Gruzkov). M.: Izd. MEI, 2005, 508 p.2. Kharitonov S.A., Stepnikov A.A. Sistema generirovaniya elektricheskoy energii tipa «Sinkhronnyy generator—invertor napryazheniya—invertor napryazheniya». — Trudy II Mezhvuzovskoy otraslevoy nauchno-tekhn. konf. «Avtomatizatsiya i progressivnyye tekhnologii» (The system for generating electrical energy of the type «Synchronous generator—voltage inverter—voltage inverter». — Proc. of the II Interuniversity sectoral scientific and technical. conf. «Automation and advanced technologies», 27 September — 1 October 1999. Novoural’sk, 1999, pp. 190-192.
3. Mytsyk G.S. O nekotorykh rezul’tatakh iproblemakh sistemnogo podkhoda k poiskovomu proyektirovaniyu mashinno-elektronnykh generiruyushchikh kompleksov avtonomnykh ob"yektov. — Trudy nauchno-tekhn. konf. «Elektrifikatsiya letatel’nykh apparatov», posvyashchennaya 125-letiyu akad. V.S. Kulebakina (About some results and problems of a systematic approach to prospecting design of machine-electronic generating complexes of autonomous objects. — Proc. of scientific and technical. conf. «Electrification of aircraft», dedicated to the 125th anniversary of academician V.S. Kulebakin, Moscow, 1 November 2016, pp. 283—291.
4. Mytsyk G.S., M’yo Min Tant. Elektrichestvo — in Russ. (Electricity), 2018, No. 2, pp. 34—42.
5. Sikorski A., Kiiiima A. Cooperation of induction squirrel-cage generator with grid con-nected AC/DC/AC converter. — Bulletin of the Polish Academy of sciences. Technical sciences. 2009, vol. 57, No. 4, pp. 317—322.
6. Bhim Singh, S.S. Murthy, Sushma Gupta. STATCOM-Based Voltage Regulator for Self-Excited Induction Generator Feeding Nonlinear Loads. — IEEE Trans. on Ind. Electronics 2006, vol. 53, No. 5, pp. 1437—1451.
7. Berilov A.V., Maslov S.I., Mytsyk G.S., Khlaing Min U. Elektropitaniye — in Russ. (Power supple), 2011, No. 2, pp. 12—19.
8. Goryakin D.V., Mytsyk G.S. Mashinno-elektronnaya generiruyushchaya sistema dlya maloy energetiki i avtonomnykh ob"yektov. — Trudy Х Mezhdunarod. yezhegodnoy konf. «Vozobnovlyayemaya i malaya energetika 2013» (Machine-electronic generating system for small energy and autonomous facilities. — Proc. of X Intern. conf. «Renewable and Small Energy 2013»). M.: Komitet VIE Ros-SNIO, pp. 102—107.
9. Goryakin D.V., Mytsyk G.S. Elektrichestvo — in Russ. (Electricity), 2012, No. 5, pp. 23—31.
10. Goryakin D.V., Mytsyk G.S. Prakticheskaya elektronika — in Russ. (Practical Electronics), 2012, No. 45, pp. 13—17.
11. Perumal B. Venkatesa, Chatterjee J.K. Analysis of a Self Excited Induction Gener-ator with STATCOM/Battery Energy Storage System/Power India Conference. IEEE 2006.
12. Mytsyk G.S., Goryakin D.V. Prakticheskaya silovaya elektronika — in Russ. (Practicalpower electronics), 2018, pp. 49—55.
13. K’o Zo Lin. Issledovaniye vozmozhnostey uluchsheniya pokazateley kachestva avtonomnoy sistemy generirovaniya napryazheniya stabil’noy chastoty na baze sinkhronizirovannogo asinkhronnogo generatora. Avtoref. dis... kand. tekhn. nauk (Study of the possibilities of improving the quality indicators of an autonomous system for generating a voltage of a stable frequency based on a synchronized asynchronous generator. Abstract. diss.... Cand. Sci. (Eng.). NIU «MEI»), 2012, 20 p.
14. Goryakin D.V. Issledovaniye novykh vozmozhnostey sovershenstvovaniya mashinno-elektronnykh generiruyushchikh sistem dlya maloy energetiki i avtonomnykh ob"yektov. Avtoref. dis... kand. tekhn. nauk (The study of new opportunities for improving machine-electronic generating systems for small-scale energy and autonomous facilities. Abstract diss ... Cand. Sci. (Eng.). M.: NIU MEI, 2013, 20 p.
15. Nguyen Khyu Nam. Sozdaniye informatsionno-metodicheskogo obespecheniya sistem-nogo proyektirovaniya elektrotekhnicheskogo kompleksa dlya vetroelektricheskoy ustanovki, rabotayushchey parallel’no s set’yu: Avtoref. dis... kand. tekhn. nauk (Creation of information and methodological support for the system design of the electrical complex for a wind power installation operating in parallel with the network. Abstract. diss ... Cand. Sci.(Eng.). NIU «MEI», 2018, 20 p.
16. Han Peng, Cheng Ming, Wei Xinchi, Li Ning. Modeling and performance analysis of a dual-stator brushless doubly fed induction machine based on spiral vector theory. — IEEE Trans. Ind. Appl., 2016, 52, No. 2, pp. 1380—1389.
17. P’yu Min Tkheyn. Sozdaniye informatsionno- metodicheskogo obespecheniya dlya sistemnogo proyektirovaniya staticheskikh preobrazovateley v sostave mashinno-elektronnykh generiruyushchikh sistem dlya maloy energetiki i avtonomnykh ob"yektov: Avtoref. dis... kand. tekhn. nauk (Creation of information and methodological support for the system design of static converters as part of machine-electronic generating systems for small-scale power generation and autonomous objects. Abstract. diss.... Cand. Sci. (Eng.). NIU «MEI», 2013, 20 p.
18. Yan Naing M’int. Issledovaniye vozmozhnostey sovershenstvovaniya elektroma-shinnykh preobrazovateley dlya mashinno-elektronnykh generiruyushchikh sistem avtonomnykh ob"yektov: Avtoref. diss.... kand. tekhn. nauk (The study of the possibilities of improving the electro-bus converters for machine-electronic generating systems of autonomous objects. Abstract. diss.... Cand. Sci. (Eng.). NIU «MEI», 2014, 20 p.
19. Nguyen Khyu Nam, G.S. Mytsyk. Novoye v rossiyskoy elektroenergetike — in Russ. (News in Russian Electric Power Engineering), 2018, № 10, p. 6—22.
20. Mytsyk G.S., M’yo Min Tant. Prakticheskaya silovaya elektronika — in Russ. (Practical Power Electronics), 2019, № 2(74), pp. 46—54.
21. Khlaing Min U. Sozdaniye informatsionno-metodicheskogo obespecheniya dlya sistemnogo proyektirovaniya preobrazuyushchikh elektronnykh, transformatorno-elektronnykh i generiruyushchikh mashinno-elektronnykh sistem elektrotekhnicheskikh kompleksov avtonomnykh ob"yektov: Avtoref. dis... doktora tekhn. nauk (Creation of information and methodological support for system design of converting electronic, transformer-electronic and generating machine-electronic systems of electrical complexes of autonomous objects. Abstract. diss.... Dr. Sci. (Eng.). NIU «MEI», 2017, 40 p.
22. Berilov A.V., Maslov S.I., Mytsyk G.S. Prakticheskaya silovaya elektronika — in Russ. (Practical Power Electronics), 2012, № 45, pp. 6—12.
23. Thant M.M., Mytsyk G.S., Oo H.M. Research results of low-distorting three phase active rectifier in the structure of the fed-converted generator. — IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow, 2018, pp. 1761-1768. doi: 10.1109/EIConRus. 2018.8317447.
24. Nguyen Huu Nam, G.S Mytsyk (Prof.Dr.), A.V Berilov and Myo Min Thant. Algorithmic Structure of Wind Turbines System based on an Induction Machine Directly Connected to the Grid — 2nd Intern. Conf. on Mechanical, System and Control Engineering (ICMSC 218), № 05004, 6 p., Published online 29.10.2018 . DOI: https://doi.org/10.1051 /matecconf / 201822005004.
25. Myo Min Thant, Mytsyk G.S., Berilov A.V. Fed-Converted Generator Based on the Squirrel-Cage Rotor Asynchyronous Macyine, with Condensing Selfexcitation and Ctabilization of tye Output Voltage. — Proc. of Academicsera 49th Intern. Conf., Osaka, Japan, 8—9 May, 2019, pp. 1—5.
26. Maslov A.E., Mytsyk G.S. Voltage-stabilized Brushless Permanent Magnets Generator with Reversible Voltage Booster Channel. — Intern. Conf. on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 2019, pp. 1—6. doi: 10.1109/ICIEAM.2019.8743079. Electronic ISBN: 978-1-53868119-0. Print on Demand (PoD) ISBN: 978-1-5386-8120-6.
27. Botvinnik M.M. Asinkhronizirovannaya sinkhronnaya mashina (Asynchronous synchronous machine). M.: Energiya, 1964.
28. Kopylov I.P. Matematicheskoye modelirovaniye elektricheskikh mashin (Mathematical modeling of electrical machines). M.: Vys-shaya shkola, 2001, 250 p.
29. Postnikov I.M., Novikov A.V., Prokofyev Yu.A. et. al. Teoriya i metody rascheta asinkhronnykh turbogeneratorov (Theory and calculation methods of asynchronous turbogenerators). Kiyev: Naukova dumka, 1977.