Energy Expenditures in a High-Voltage Three-Phase AC Superconducting Cable

  • Yury L. BUYANOV
  • Vladimir V. ZHELTOV
  • Sergey I. KOPYLOV
  • Andrey Yu. ARKHANGEL’SKIY
  • Nikolay N. BALASHOV
  • Nikolay Ye. KABDIN
  • Lyubov’ N. KOPYLOVA
Keywords: high-temperature superconducting power cable, cryogenic cooling system, energy expenditures in a cable

Abstract

The basic circuit diagrams of cryogenic installations that can ensure the necessary temperature operation conditions of power cables on the basis of high-temperature superconductors are considered. Formulas for calculating the energy consumed for cooling the cable by means of closed- and open-type cryogenic installations are determined. The hydraulic losses determining the energy expenditures for pumping the cryoagent in the cable cryostat with corrugated shells are analyzed. The components of the power required to compensate for the losses in transmitting electric energy via a superconducting cable are determined. As a result, a procedure for calculating energy expenditures for cryogenic installations in different cycles of their operation is proposed. The hydraulic friction coefficient in the flexible cryostat shells is determined. The available empirical relations for estimating the hydraulic friction coefficient in a flexible cryostat are compared with one another.

Author Biographies

Yury L. BUYANOV

(Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS), Moscow, Russia) – Leading engineer. Cand. Sci. (Eng.)

Vladimir V. ZHELTOV

(JIHT RAS, Moscow, Russia) – Senior Scientist, Cand. Sci. (Phus. Math.)

Sergey I. KOPYLOV

(JIHT RAS, Moscow, Russia) – Head of the Laboratory, Dr. Sci. (Eng.)

Andrey Yu. ARKHANGEL’SKIY

(JIHT RAS, Moscow, Russia) – Leading Engineer, Cand. Sci. (Eng.)

Nikolay N. BALASHOV

(JIHT RAS, Moscow, Russia) – Scientist

Nikolay Ye. KABDIN

(Russian State Ograrion University of the Moscow Agricultural Academy named K.A. Timiryazev) – Head of the Department, Cand. Sci. (Eng.)

Lyubov’ N. KOPYLOVA

(NRU «Moscow Power Engineering Institute», Moscow, Russia) – Associate Professor

References

1. Yu.L. Buyanov. The thermal state of high-temperature superconducting current leads during disarrangement of superconductivity. Russian Electrical Engineering. March, 2019, v. 90, No. 3, pp. 246–255, Doi: 10.3103/s106837/2/9030064.

2. Буянов Ю.Л. Влияние способа охлаждения токовпрово- дов с высокотемпературными сверхпроводниками на тепловые состояния. – Электричество, 2019, № 1, с. 30–36.

3. Ho-Myung Chang, Ki Nam Ryu, Hyung SukYang. Integrated design of cryogenic refrigerator and liquid-nitrogen circulation loop for HTS cable. – Cryogenics, 2016, v. 80, part 2, pр. 183–192.

4. Gouge M.J., Demko J.A., Roden M.L., Maguire J.F., Weber C.S. Vacuum-insulated, flexible cryostats for long HTS cables: requirements, status and prospects. Advances in Cryogenic Engineering, 2008, v. 53B, pp. 1343–1350.

5. Daniels C.M. Pressure Losses in Flexible Metal Tubing. Product Engineering, 1956, v. 27, No. 4, pp. 223–227.

6. Riley K.L. Flow losses in flexible hose. Diss. Ph.D. Lousiane State University, 1967.

7. Шевченко С.А., Конюх В.И., Макотер А.П. Газодинами- ческое сопротивление и скорость звука в канале с гофрирован- ной стенкой. – Вiсник НТУ ХПИ, cер. Гидравлические маши- ны и гидроагрегаты, 2016, № 20, с. 94–101.

8. Daniels C.M., Fenton R.E. Determining Pressure Drop in Flexible Metal Hose. – Machine Design, 1960, v. 37, № 27, pp. 195–198.

9. Фрадков А.Б., Гинодман В.Б. Гибкие сифоны перелива- ния жидкого гелия. – Приборы и техника эксперимента, 1970, № 1, с. 233–239.

10. Справочник по физико-техническим основам криогени- ки/Под ред. М.П. Малкова. М.: Энергоатомиздат, 1985, 432 с

#

1. Yu.L. Buyanov. The thermal state of high-temperature superconducting current leads during disarrangement of superconductivity. Russian Electrical Engineering. March, 2019, v. 90, No. 3, pp. 246–255, DOI: 10.3103/s106837/2/9030064.

2. Buyanov Yu.L. Elektrichestvo – in Russ. (Electricity), 2019, No. 1, pp. 30–36.

3. Ho-Myung Chang, Ki Nam Ryu, Hyung SukYang. Integrated design of cryogenic refrigerator and liquid-nitrogen circulation loop for HTS cable. – Cryogenics, 2016, v. 80, part 2, pр. 183–192.

4. Gouge M.J., Demko J.A., Roden M.L., Maguire J.F., Weber C.S. Vacuum-insulated, flexible cryostats for long HTS cables: requirements, status and prospects. Advances in Cryogenic Engineering, 2008, v. 53B, pp. 1343–1350.

5. Daniels C.M. Pressure Losses in Flexible Metal Tubing. Product Engineering, 1956, v. 27, No. 4, pp. 223–227 .

6. Riley K.L. Flow losses in flexible hose. Diss. Ph.D. Lousiane State University, 1967.

7. Shevchenko S.A., Konyukh V.I., Makoter A.P. Visnik NTU KhPI, ser. Gidravlicheskiye mashiny i gidroagregaty –in Ukraina (Visnik NTU KhPI), 2016, No. 20, pp. 94 –101.

8. Daniels C.M., Fenton R.E. Determining Pressure Drop in Flexible Metal Hose. – Machine Design, 1960, v. 37, No. 27, pp. 195–198.

9. Fradkov A.B., Ginodman V.B. Pribory i tekhnika eksperimenta – in Russ. (Instruments and Experimental Techniques), 1970, No. 1, pp. 233–239.

10. Spravochnik po fizikotekhnicheskim osnovam kriogeniki/Pod red. M.P. Malkova (Handbook on the physical and technical foundations of cryogenics/Ed. M.P. Malkov). M.: Energoatomizdat, 1985, 432 p.

Published
2020-04-07
Section
Article