Superconducting Wind Generators with Capacities of 10 MW and Larger

  • Victor N. ANTIPOV
  • Andrey D. GROZOV
  • Anna V. IVANOVA
Keywords: wind power engineering, synchronous superconducting wind generators, design concepts, factors impeding commercial application, advanced projects

Abstract

The overall dimensions and mass of wind power units with capacities larger than 10 MW can be improved and their cost can be decreased by developing and constructing superconducting synchronous generators. The article analyzes foreign conceptual designs of superconducting synchronous generators based on different principles: with the use of high- and low-temperature superconductivity, fully superconducting or only with a superconducting excitation system, and with the use of different materials (MgB2, Bi2223, YBCO). A high cost of superconducting materials is the main factor impeding commercial application of superconducting generators. In view of the state of the art in the technology for manufacturing superconductors and their cost, a conclusion is drawn, according to which a synchronous gearless superconducting wind generator with a capacity of 10 MW with the field winding made of a high-temperature superconducting material (MgB2, Bi-2223 or YBCO) with the «ferromagnetic stator — ferromagnetic rotor» topology, with the stator diameter equal to 7—9 m, and with the number of poles equal to 32—40 has prospects for its practical use in the nearest future.

Author Biographies

Victor N. ANTIPOV

(Russion Academy of Sciences (RAS), Institute of Silicate Chemistry (ISCh), St. Petersburg, Russia) — Leading Scientist, Dr. Sci. (Eng.)

Andrey D. GROZOV

(RAS, ISCh, St. Petersburg, Russia) — Scientist

Anna V. IVANOVA

(RAS, ISCh, St. Petersburg, Russia) — Senior Scientist, Cand. Sci. (Eng.)

References

1. Maries B., Yand M., Musial W. Comparative assessment of direct drive high temperaturasupercondacting generators in multimegawatt class wind turbines. National Renewable Energy Laboratory. Technical Report. 2010 [Электрон. ресурс] http://www.osti.gov/bridge (дата обращения 04.04.2020).
2. Ragheb M. Modern wind generators. NetFiles. Univ. of Illinois at Urbana-Champaign. 2010. 90 p.
3. Zhu Z., Qu R., Wang J. Conceptual design of the cryostat for a direct drive superconducting wind generator. IEEE Transactions on Applied Superconductivity. 201, vol. 24, iss. 3. DOI: 10.1109/TASC.2013.229032
4. AMSC. Sea Titan TM 10 MW Wind Turbine [Электрон. ре­сурс] http://www.amsc.com/documents/seatitan-10-mw-wind-turbine- data-shee (дата обращения 18.03.2020).
5. Snitchier G., Gamdle B., King C. 10 MW class superconductor wind turbine generators. - IEEE Trans. Appl. Supercond, 2011, vol. 21, No. 3, pp. 1089-1092.
6. Fair R., Stautner W., Douglass M., et al. Superconductivity for large-scale wind turbines. Appl. Superconductivity Conf., Portland, Oregon October 11th, 2012. DOE report. DOI: 10.2172/1052970
7. Advance Magnetic Lab [Электрон. ресурс] http://www.magnetlab.com. (дата обращения 29.03.2020).
8 Swarn S. Kalsi. Superconducting wind turbine generator employing MgB2 windings both on rotor and stator. IEEE Trans. on Applied Superconductivity, 2014, vol. 24. No. 1. DOI: 10.1109/TASC.2013.2291275.
9. Liu D., Polinder H., Abrahamsen A.B., and Ferreira J.A. Potential of Partially Superconducting Generators for Large Direct-Drive Wind Turbines. - IEEE Transactions on Applied Superconductivity. 2017, vol. 27, No. 5, pp. 1-11. DOI: 10.1109/TASC.2017.2707661.
10. Dong Liu, Henk Polinder, Asger B. Abrahamsen, and Jan A. Ferreira. Topology Comparison of Superconducting Generators for 10-MW Direct-Drive Wind Turbines:Cost of Energy Based IEEE Transactions on Applied Superconductivity v/27. n 4.
11. Fukui S., Ogawa J., T. Sato, Tsukamoto O., Kashima N., Nagaya S. Study of 10 MW-class wind turbine synchronous generators with HTS field windings. - IEEE Trans. on Applied Superconductivity. 2011, vol. 21, No. 3, pp. 1151-1154.
12. Terao Y., Sekino M., and Ohsaki H. Electromagnetic design of 10 MW class fully superconducting wind turbine generators. - IEEE Trans. on Applied Superconductivity, 2012, vol. 22, No. 3, pp. 5201904. DOI:10.1109/TASC.2011.2177628.
13. Wang J., Qu R., Tang Y., Liu Y., Zhang B., et al. Design of a superconducting synchronous generator with LTS field windings for 12 MW offshore direct-drive wind turbines. - IEEE Trans. Ind. Electron. 2016, vol. 63, No. 3, pp. 1618-1628. DOI: 10.1109/TIE.2015.2415758.
14. Liang Y., Rotaru M.D., Sykulski J.R. Electromagnetic simulation of a fully superconducting 10-MW-classs wind turbine generator. - IEEE Trans. Appl. Superconductivity, 2013, vol. 23 (6), pp. 46-50. DOI: 10.1109/TASC.2013.2277778.
15. Kim J.H., Kim H.M. Electromagnetic design of 10 MW class superconducting wind turbine using 2G HTS wire. Progress in Superconductivity and Cryogenics. 2013, vol. 15, No. 3, pp. 29-34.
16. Sung H.-J., Kim G.-H., Kim K., Jung S.-J., et al. Practical design of a 10 MW superconducting wind power generator considering weight. - IEEE Trans. on Applied Superconductivity. 2013, vol. 23, No. 3. DOI: 10.1109/TASC.2013.2245175.
17. Maki N. Design study of high-temperature superconducting generators for wind power systems. 8th European Conference on Applied Superconductivity (EUCAS 2007). IOP Publishing Journal of Physics: Conference Series 97. 2008. D0I:10.1088/1742-6596/97/1/012155.
18. Hoang T.-K., Queval L., Berriaud C., Vido L. Design of a 20-MW fully superconducting wind turbine generator to minimize the levelized cost of energy. — IEEE Trans. on Applied Superconductivity. 2018, vol. 28, No. 4. DOI: 10.1109/TASC.2018.2810309.
19. Keysan O., Mueller M. A modular and cost-effective superconducting generator design for ofshore wind turbines institute for energy systems. Superconductor Science and Technology, 2015, vol. 28, No. 3. DOI: 10.1088/0953-2048/28/3/034004.
20. Jeong J.-S., An D.-k., Hong J.-P., et al. Design of a 10-MW-class HTS homopolar generator for wind turbines. IEEE Trans. on Applied Superconductivity, 2017, vol. 27, No. 4. DOI: 10.1109/TASC.2017.2669140.
21. Y. Liu, S. Niu, S. L. Ho, W. N. Fu, and T. W. Ching. Design and analysis of a new HTS double-stator doubly-fed wind generator. — IEEE Trans. Appl. Supercond, 2015, vol. 25, No. 3. DOI: 10.1109/TASC.2014.2366458.
#
1. Marles B., Yand M., Musial W. Comparative assessment of direct drive high temperaturasupercondacting generators in multimegawatt class wind turbines. National Renewable Energy Laboratory. Technical Report. 2010 [Electron. Resourse] http://www.osti.gov/bridge (Data of appeal 04.04.2020).
2. Ragheb M. Modern wind generators. NetFiles. Univ. of Illinois at Urbana-Champaign. 2010. 90 p.
3. Zhu Z., Qu R., Wang J. Conceptual design of the cryostat for a direct drive superconducting wind generator. IEEE Transactions on Applied Superconductivity. 201, vol. 24, iss. 3. DOI: 10.1109/TASC.2013.229032
4. AMSC. Sea Titan TM 10 MW Wind Turbine [Electron. Resourse] http://www.amsc.com/documents/seatitan-10-mw-wind-turbinedata-shee (Data of appeal 18.03.2020).
5. Snitchier G., Gamdle B., King C. 10 MW class superconductor wind turbine generators. – IEEE Trans. Appl. Supercond, 2011, vol. 21, No. 3, pp. 1089–1092.
6. Fair R., Stautner W., Douglass M., et al. Superconductivity for large-scale wind turbines. Appl. Superconductivity Conf., Portland, Oregon October 11th, 2012. DOE report. DOI: 10.2172/1052970
7. Advance Magnetic Lab [Электрон. ресурс] http://www.magnetlab.com. (дата обращения 29.03.2020).
8 Swarn S. Kalsi. Superconducting wind turbine generator employing MgB2 windings both on rotor and stator. IEEE Trans. on Applied Superconductivity, 2014, vol. 24. No. 1. DOI: 10.1109/TASC.2013.2291275.
9. Liu D., Polinder H., Abrahamsen A.B., and Ferreira J.A. Potential of Partially Superconducting Generators for Large Direct-Drive Wind Turbines. – IEEE Transactions on Applied Superconductivity. 2017, vol. 27, No. 5, pp. 1–11. DOI: 10.1109/TASC.2017.2707661.
10. Dong Liu, Henk Polinder, Asger B. Abrahamsen, and Jan A. Ferreira. Topology Comparison of Superconducting Generators for 10-MW Direct-Drive Wind Turbines:Cost of Energy Based IEEE Transactions on Applied Superconductivity v/27 nT4..
11. Fukui S., Ogawa J., T. Sato, Tsukamoto O., Kashima N., Nagaya S. Study of 10 MW-class wind turbine synchronous generators with HTS field windings. – IEEE Trans. on Applied Superconductivity. 2011, vol. 21, No. 3, pp. 1151–1154.
12. Terao Y., Sekino M., and Ohsaki H. Electromagnetic design of 10 MW class fully superconducting wind turbine generators. – IEEE Trans. on Applied Superconductivity, 2012, vol. 22, No. 3, pp. 5201904. DOI:10.1109/TASC.2011.2177628.
13. Wang J., Qu R., Tang Y., Liu Y., Zhang B., et al. Design of a superconducting synchronous generator with LTS field windings for 12 MW offshore direct-drive wind turbines. – IEEE Trans. Ind. Electron. 2016, vol. 63, No. 3, pp. 1618-1628. DOI: 10.1109/TIE.2015.2415758.
14. Liang Y., Rotaru M.D., Sykulski J.R. Electromagnetic simulation of a fully superconducting 10-MW-classs wind turbine generator. – IEEE Trans. Appl. Superconductivity, 2013, vol. 23 (6), pp. 46–50. DOI: 10.1109/TASC.2013.2277778.
15. Kim J.H., Kim H.M. Electromagnetic design of 10 MW class superconducting wind turbine using 2G HTS wire. Progress in Superconductivity and Cryogenics. 2013, vol. 15, No. 3, pp. 29–34.
16. Sung H.-J., Kim G.-H., Kim K., Jung S.-J., et al. Practical design of a 10 MW superconducting wind power generator considering weight. – IEEE Trans. on Applied Superconductivity. 2013, vol. 23, No. 3. DOI: 10.1109/TASC.2013.2245175.
17. Maki N. Design study of high-temperature superconducting generators for wind power systems. 8th European Conference on Applied Superconductivity (EUCAS 2007). IOP Publishing Journal of Physics: Conference Series 97. 2008. DOI:10.1088/1742-6596/97/1/012155.
18. Hoang T.-K., Quéval L., Berriaud C., Vido L. Design of a 20-MW fully superconducting wind turbine generator to minimize the levelized cost of energy. – IEEE Trans. on Applied Superconductivity. 2018, vol. 28, No. 4. DOI: 10.1109/TASC.2018.2810309.
19. Keysan O., Mueller M. A modular and cost-effective superconducting generator design for ofshore wind turbines institute for energy systems. Superconductor Science and Technology, 2015, vol. 28, No. 3. DOI: 10.1088/0953-2048/28/3/034004.
20. Jeong J.-S., An D.-k., Hong J.-P., et al. Design of a 10-MW-class HTS homopolar generator for wind turbines. IEEE Trans. on Applied Superconductivity, 2017, vol. 27, No. 4. DOI: 10.1109/TASC.2017.2669140.
21. Y. Liu, S. Niu, S. L. Ho, W. N. Fu, and T. W. Ching. Design and analysis of a new HTS double-stator doubly-fed wind generator. – IEEE Trans. Appl. Supercond, 2015, vol. 25, No. 3. DOI: 10.1109/TASC.2014.2366458.
Published
2020-05-11
Section
Article