The Influence of Barrier and Applied Voltage Parameters on the Impulse Surface Discharge Characteristics

  • Vadim V. VOEVODIN
  • Marina V. SOKOLOVA
  • Viktor R. SOLOV’YEV
  • Nikolay Yu. LYSOV
Keywords: high voltage engineering, surface discharge, pulse voltage, dielectric constant, discharge ignition voltage, gas discharge radiation

Abstract

The results from an experimental study of impulse surface discharge occurring in an electrode system containing a dielectric plate are presented. On one of its sides, the plate had a corona-producing electrode made of 50 mm thick copper foil grounded through a current shunt for measuring the discharge current. On its other side, the plate had a high-voltage electrode, to which the voltage from a pulse generator was applied. The article presents the results from measurements of the initial voltage and the sizes of the surface discharge area in air when applying single voltage pulses with different pulse front steepness in the range 0,1–3,4 kV/ms and amplitude in the range 7–15 kV. The measurements were carried out for different dielectric barrier materials with the e values from 2 to 35. The dielectric barrier thickness was 0,9–1,8 mm. The study results have shown that the initial surface discharge ignition voltage depends essentially on the voltage pulse parameters, whereas the barrier characteristics have a weaker effect on this voltage. It has been determined that the discharge has different discharge zone length and different structure depending on the dielectric barrier properties and applied voltage parameters. The streamer zone sizes decrease with increasing the barrier material e value at the same voltage pulse steepness and increase with increasing the steepness for each barrier material. The data obtained for a wide range of external conditions can be used in numerical modeling of discharge.

Author Biographies

Vadim V. VOEVODIN

(National Research University «Moscow Power Engineering Institute» – NRU «MPEI», Moscow, Russia) – Scientist of High Voltage Engineering and Electrophysics (HVEE) Dept.

Marina V. SOKOLOVA

(NRU «MPEI». Moscow, Russia) – Leading Scientist of HVEE Dept., Cand. Sci. (Eng.)

Viktor R. SOLOV’YEV

(Moscow Physical and Technical Institute, Moscow, Russia) – Associate Professor of Applied Physics Dept., Cand. Sci. (Phys-Math)

Nikolay Yu. LYSOV

(NRU «MPEI», Moscow, Russia) – Senior Teacher of HVEE Dept.

References

1. Toepler M. Zur Kenntnis der Gesetze der Gleitfunkenbildung. – Ann. Physik, 1906, vol. 21, pp. 193–222.

2. Boeuf J.P., Lagmich Y., Pitchford L.C. Contribution of positive and negative ions to the electrohydrodynamic force in a dielectric barrier discharge plasma actuator operating in air. – J. Appl. Phys., 2009, № 106, 023115.

3. Soloviev V.R., Krivtsov V.M. Surface barrier discharge modeling for aerodynamic applications. – J. Phys. D: Appl. Phys, 2009, № 42, 125208.

4. Babaeva N.Yu., Tereshonok D.V., Naidis G.V. Fluid and hybrid modeling of nanosecond surface discharges: effect of polarity and secondary electrons emission. – Plasma Sources Sci. Technol, 2016, № 25, 044008.

5. Zhu Y., Shcherbanev S., Baron B., Starikovskaia S. Nanosecond surface dielectric barrier discharge in atmospheric pressure air: I. Measurements and 2D modeling of morphology, propagation and hydrodynamic perturbations. – Plasma Sources Sci. Technol, 2017, № 26, 125004.

6. Soloviev V.R., Krivtsov V.M., Shcherbanev S.A. and Starikovskaia S.M. Evolution of nanosecond surface dielectric barrier discharge for negative polarity of a voltage pulse. – Plasma Sources Sci. Technol., 2017, № 26, 014001.

7. Hua W., Fukagata K. Near-surface electron transport and its influence on the discharge structure of nanosecond-pulsed dielectric-barrier discharge under different electrode polarities. – Phys. Plasmas, 2019, № 26, 013514.

8. Соколова М.В., Темников А.Г., Кривов С.А. О механизме взаимодействия поверхностного электрического разряда с диэлектрическим барьером. – Электричество, 2010, № 7, с. 10–19.

9. Митин А.Н., Соколова М.В. Влияние структуры поверхности твердого диэлектрика на электрическое поле вблизи границы раздела воздух-барьер. – Письма в ЖТФ, 2012, № 10, с. 50–56.

10. Stepanyan S.A., Starikovskiy A.Yu., Popov N.A. and Starikovskaia S.M. A nanosecond surface dielectric barrier discharge in air at high pressures and different polarities of applied pulses: transition to filamentary mode. – Plasma Sources Sci. Technol, 2014, № 23, 045003.

11. Soloviev V.R. Analytical estimation of the thrust generated by a surface dielectric barrier discharge. – J. Phys. D: Applied Physics, 2012, № 45, 025205.

12. Pietsch G.J. and Saveliev A. Some properties of the barrier discharges on the dielectric surfaces. – Proc. 14th Int. Conf. on Gas Discharges and their Applications, 2002, Liverpool, UK, pp. 183–6.

13. Gibalov V.I., Pietsch G.J. The Development of Dielectric Barrier Discharges in Gas Gaps and on Surfaces. – J. Phys. D: Appl. Phys, 2000, № 33, 2618-2636.

14. Soloviev V.R. Analytical model of the surface dielectric barrier discharge development. – Plasma Physics Rep., 2019, № 45, vol. 3, pp. 264–276.

15. Benard N., Moreau E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. – Exp. Fluids, 2014, № 55, 1846.

16. Kriegseis J., Grundmann S. and Tropea C. Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators. – Journal of Applied Physics, 2011, № 110, 013305.

17. Moralev I., Boytsov S., Kazansky P., Bityurin V. Gas-dynamic disturbances created by surface dielectric barrier discharge in the constricted mode. – Exp. Fluids, 2014, № 55, 1747.

18. Корякова З.В. Керамические материалы в СВЧ-технике. – Компоненты и технологии, 2011, № 5, с. 15–17.

19. Khomich V.Yu., Malashin M.V., Moshkunov S.I. Static and transient voltage sharing in high voltage stacked IGBT switch. – International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2016), June 22–24, 2016, Anacapri, Italia.

20. Murooka Y., Takada T. and Hiddaka K. Nanosecond surface discharge and charge density evaluation Part I: review and experiments. – IEEE Electrical Insulation Magazine, 2001, № 17, No 2, p. 6–16.

21. Sokolova M., Mitin A., Nosova J. A complex method to analyze dielectric barrier surface discharge in air. – 31th International Conf. on Phenomena in Ionized Gases (ICPIG), July 14–19, 2013, Granada Spain.

22. Soloviev V.R., Krivtsov V.M. Numerical modelling of nanosecond surface dielectric barrier discharge evolution in atmospheric air. – Plasma Sources Sci. Technol., 2018, No. 27, 114001.

#

1. Toepler M. Zur Kenntnis der Gesetze der Gleitfunkenbildung. – Ann. Physik, 1906, vol. 21, pp. 193–222.

2. Boeuf J.P., Lagmich Y., Pitchford L.C. Contribution of positive and negative ions to the electrohydrodynamic force in a dielectric barrier discharge plasma actuator operating in air. – J. Appl. Phys., 2009, No. 106, 023115.

3. Soloviev V.R., Krivtsov V.M. Surface barrier discharge modeling for aerodynamic applications. – J. Phys. D: Appl. Phys, 2009, No. 42, 125208.

4. Babaeva N.Yu., Tereshonok D.V., Naidis G.V. Fluid and hybrid modeling of nanosecond surface discharges: effect of polarity and secondary electrons emission. – Plasma Sources Sci. Technol, 2016, No. 25, 044008.

5. Zhu Y., Shcherbanev S., Baron B., Starikovskaia S. Nanosecond surface dielectric barrier discharge in atmospheric pressure air: I. Measurements and 2D modeling of morphology, propagation and hydrodynamic perturbations. – Plasma Sources Sci. Technol, 2017, No. 26, 125004.

6. Soloviev V.R., Krivtsov V.M., Shcherbanev S.A. and Starikovskaia S.M. Evolution of nanosecond surface dielectric barrier discharge for negative polarity of a voltage pulse. – Plasma Sources Sci. Technol., 2017, No. 26, 014001.

7. Hua W., Fukagata K. Near-surface electron transport and its influence on the discharge structure of nanosecond-pulsed dielectric-barrier discharge under different electrode polarities. – Phys. Plasmas, 2019, No. 26, 013514.

8. Sokolova M.V., Temnikov A.G., Krivov S.A. Elektrichestvo – in Russ. (Electricity) , 2010, No. 7, pp. 10–19.

9. Mitin A.N., Sokolova M.V. Pis’ma v ZhTF – in Russ. (Letters to ZhTF) , 2012, No. 10, pp. 50–56.

10. Stepanyan S.A., Starikovskiy A.Yu., Popov N.A. and Starikovskaia S.M. A nanosecond surface dielectric barrier discharge in air at high pressures and different polarities of applied pulses: transition to filamentary mode. – Plasma Sources Sci. Technol, 2014, No. 23, 045003.

11. Soloviev V.R. Analytical estimation of the thrust generated by a surface dielectric barrier discharge. – J. Phys. D: Applied Physics, 2012, No. 45, 025205.

12. Pietsch G.J. and Saveliev A. Some properties of the barrier discharges on the dielectric surfaces. – Proc. 14th Int. Conf. on Gas Discharges and their Applications, 2002, Liverpool, UK, pp. 183–6.

13. Gibalov V.I., Pietsch G.J. The Development of Dielectric Barrier Discharges in Gas Gaps and on Surfaces. – J. Phys. D: Appl. Phys, 2000, No. 33, 2618–2636.

14. Soloviev V.R. Analytical model of the surface dielectric barrier discharge development. – Plasma Physics Rep., 2019, No. 45, vol. 3, pp. 264–276.

15. Benard N., Moreau E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. – Exp. Fluids, 2014, No. 55, 1846.

16. Kriegseis J., Grundmann S. and Tropea C. Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators. – Journal of Applied Physics, 2011, No. 110, 013305.

17. Moralev I., Boytsov S., Kazansky P., Bityurin V. Gas-dynamic disturbances created by surface dielectric barrier discharge in the constricted mode. – Exp. Fluids, 2014, No. 55, 1747.

18. Koryakova Z.V. Komponenty i tekhnologii – in Russ. (Components and technologies), 2011, No. 5, pp. 15–17.

19. Khomich V.Yu., Malashin M.V., Moshkunov S.I. Static and transient voltage sharing in high voltage stacked IGBT switch. – International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2016), June 22–24, 2016, Anacapri, Italia.

20. Murooka Y., Takada T. and Hiddaka K. Nanosecond surface discharge and charge density evaluation Part I: review and experiments. – IEEE Electrical Insulation Magazine, 2001, No. 17, No 2, pp. 6–16.

21. Sokolova M., Mitin A., Nosova J. A complex method to analyze dielectric barrier surface discharge in air. – 31th International Conf. on Phenomena in Ionized Gases (ICPIG), July 14–19, 2013, Granada Spain.

22. Soloviev V.R., Krivtsov V.M. Numerical modelling of nanosecond surface dielectric barrier discharge evolution in atmospheric air. – Plasma Sources Sci. Technol., 2018, No. 27, 114001

Published
2020-08-06
Section
Article